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Anti-Money Laundering by Group-Aware
Deep Graph Learning

Dawei Cheng, Yujia Ye, Sheng Xiang, Zhenwei Ma, Ying Zhang and Changjun Jiang

Abstract—Anti-money laundering (AML) is a classical data mining problem in finance applications. As well known, money laundering
(ML) is critical to the effective operation of transnational and organized crime, which affects a country’s economy, government, and
social wellbeings. Financial services organizations facilitate the movement of money and have been enlisted by governments to assist
with the detection and prevention of money laundering, which is a key tool in the fight to reduce crime and create sustainable economic
development. In the application of AML, user identity and financial behavior data are widely used to detect laundering transactions. In
recent years, an increasing number of money laundering activities have been conducted by organized criminal gangs while most
existing works still treat the actions of each account as independent identity behavior without considering the group-level conspired
interactions. Therefore, in this paper, we propose a group-aware deep graph learning-based approach for organized money-laundering
detection. In particular, we design a community-centric encoder to represent the nodes and attributes in user transaction graphs and
derive the adjacent gang behaviors. Then, we devise a scheme of local enhancement to accommodate nodes with similar transaction
features, which are aggregated into gangs for downstream detection. Extensive experiments on the real-world dataset from one of the
largest bank card alliances worldwide show that our proposed method outperforms state-of-the-art methods in both offline and online
modes, showing the effectiveness of money laundering detection with group-aware deep graph learning.

Index Terms—money Laundering; data mining; graph neural network; graph learning

✦

1 INTRODUCTION

M Oney laundering is the process of changing large amounts
of money obtained from crimes, such as drug trafficking,

into origination from a legitimate source. It is a key path for crim-
inals to disguise their illegal origin, which enables them to enjoy
these profits without jeopardizing their source [1], [2]. A meta-
analysis by United Nations Office on Drugs and Crime estimates
that the total amount of money laundered through the financial
system is equivalent to about 2.7 percent of global gross domestic
product [3]. A financial crime of such an extent is a serious threat
to societies and economies all over the world [4]. Therefore,
fighting against money laundering is crucial significance to the
long-term health of national financial stability and international
business safety.

The financial industry has developed anti-money laundering
solutions since the beginning of the twentieth-century [5], [6].
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Traditional approaches focus on legislative considerations and
compliance requirements, which is time-consuming and labor-
intensive as money laundering is a sophisticated and constantly
updated activity [7], [8]. Most AML approaches in the market
includes: 1). rule-based [7], which makes decisions using general
sets of predefined rules and thresholds [9]; 2). learning-based
[10], [11], i.e. inferring the risk probability by classical machine
learning approaches, such as logistic regression, support vector
machine, etc [12]. But classical machine learning methods face
significant challenges in detecting human brain-armed money
laundering behavioral patterns because most of these models have
very limited parameter capacity which may lead to suboptimal
performance in detecting conspiracy actions.

In recent years, financial services organizations that facilitate
the movement of money have been enlisted by regulators to
assist with the AML task. Therefore, various deep learning-based
models are possible to be leveraged for money laundering detec-
tion with massive transactional behavior data available, including
convolutional feature learning [13], sequence learning [14] and
graph pattern learning [15]. For example, Mubalaike and Adali
[16] developed an ensemble method by combining decision trees
with a stacked auto-encoder (SAE) and restricted Boltzmann
machine (RBM) for suspicious transaction detection. Weber et. al.,
[17] utilizes Fast-Graph Convolutional Networks (FGCN) to learn
graph representations of transactions for AML, which improves
the detection performance.

Despite these approaches achieving remarkable successes, we
also observed that existing methods treat each identity as an inde-
pendent account without considering the group-level (gang-level)
interactions. For money laundering criminals, group behaviors are
normally conducted. Figure 1 presents a typical process of this
gang-level organized criminal. The lockstep criminals frequently
manipulate a group of accounts to diffuse a large amount of
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Fig. 1. The procedure of money laundering. (1) Placement: moving a
bulk of dirty money into the financial system. (2) Layering: “laundering”
on each transaction, such as trading in different user accounts, curren-
cies or stocks across different markets. (3) Integration: retrieving the
illicit funds in a legal way.

money in different channels and thus derive these transactions
with over-consistent group patterns. Our intuition is also proved
by a real-world dataset as shown in Figure 2. We construct the
user transaction graph first, in which we color criminal nodes in
red. As we can see, the criminal patterns are obvious in the group-
level structures. Inspired by these observations, we believe the
group interactions among accounts that are built from the graph
might be essential to detecting money laundering transactions.

To this end, we devise a group-aware (gang-aware) graph neu-
ral network-based approach (GAGNN) for organized money laun-
dering transaction detection. In particular, we design a community-
centric encoder to transform the original transactions into graphs
and proceed to encode the graph using both topological and
attribute-wise information. Then, we devise a scheme of the
local enhancement layers to accommodate nodes with similar
transaction features, which are aggregated into groups to learn the
organized behavior patterns. Finally, a joint optimization strategy
is adopted to infer the suspicious probability of money laundering
transactions. We conduct extensive experiments to evaluate the
effectiveness of our proposed method on the large-scale real-
world dataset of UnionPay, one of the largest bank card alliances
worldwide. The results demonstrate the superior performance of
GAGNN in detecting individual and organized suspicious money
laundering transactions. The main contributions of the paper are
summarized as follows:

1) We address a crucially important financial criminal problem
with a data-driven graph learning approach. Our work paves a
new way for group-aware detection in addressing the money
laundering threat to the financial industry.

2) We design and implement the group-aware deep graph learn-
ing approach, which enables the model to learn from user
transaction graphs directly. We also propose a community-
centric encoder, local enhancement layer, and prediction
network and prove its effectiveness in overcoming organized
money laundering threats.

3) We thoroughly evaluate the proposed approach by comparing
it with the existing benchmarks on the historical dataset and
achieve state-of-the-art performance. In addition, we conduct
empirical studies in real-world money-laundering cases, and
the result proves our method could prevent potential financial
crime for the long-term health of the economic environment
and sustainable society.

The rest of the paper is organized as: Section 2 describes the
business background and data observation. Section 3 shows the
proposed model in detail. We report the experiment results and
case studies in Section 4. Section 5 surveys the related work.
Conclusion and discussion are described in Section 6.

Legitimate Nodes

Suspicious Nodes

An Organized 
Money Laundering 
Gang 

Fig. 2. The layout of a real-world ML user transaction graph. The records
being reported as high risk of money laundering are colored red. The
legitimate ones are colored blue.

2 PRELIMINARIES

2.1 Background Knowledge
Money laundering is a term used to describe the process of
taking funds generated from illegal activities and making them
legitimate and clean. Figure 1 illustrates typical procedures of
money laundering: 1) Placement stage. In this stage, criminals
move a bulk of dirty money into the financial system, which is
the most vulnerable stage that may attract the attention of AML
agencies. 2) Layering stage. It breaks the funds into various small
transactions and employs “laundering” on each transaction in
order to make it difficult to be detected, such as trading in different
currencies or stocks across different markets. 3) Integration stage.
Multiple “laundered” funds are now returned to the criminals
legitimately, which means they retrieve their illicit funds in a legal
way after fully integrating them into a legitimate source, and are
able to use them for any purpose.

As we can see, financial institutions play an important role in
ML, which is the main channel for the placement, layering, and in-
tegration stages. Meanwhile, these massive illicit transactions are
also recorded by IT systems in financial institutions, which makes
it possible to detect money laundering suspicious transactions
by advanced big data-driven analysis techniques. Therefore, this
paper explores moving a step forward and reports our observations
and findings on data-driven anti-money laundering combat using
a group-aware graph neural network.

2.2 Observations from User Transaction Graphs
In this section, we report our observations on user transaction
graphs via data-driven analysis. Formally, a user transaction graph
(shorted as graph in the rest of this paper) G is composed of
users as nodes V and transactions as edges E. Figure 2 shows
the layout of a real-world graph with over 2,100 users and 5,000
transactions, in which 287 records are reported as high risk of
money laundering and we colored them red. The legitimate ones
are colored blue. The structure of this graph is very complex
with many nodes, but still, one transaction pattern can be seen.
There’s a cluster-like transaction pattern: the graph is clustered
into various groups, and these clusters may be all normal user
nodes, or most of them may be nodes that have been involved
in money laundering, and the red nodes have a higher risk of
money laundering transactions with each other. If each cluster
of nodes on the graph is considered as a group, the groups on
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Fig. 3. The architecture of the proposed group-aware money-laundering detection model. (a) illustrates the input layer of the user transaction graph;
(b) shows the architecture of the community-centric encoder; (c) displays the prediction network with joint optimization of nodes, edges, and groups
representations; d) reports the group representation layer in local enhancement operations which takes the results learned from encoder and
aggregate correlated nodes as gangs.

the graph can be roughly divided into two categories: suspicious
groups and normal groups. Obviously, criminals and normal users
are clearly separated into different groups, even though there
are some ambiguous connections between different groups. As
each individual transaction meets the compliance of regulation,
conventional approaches face challenges in this situation because
they fail to represent the group-level transaction behaviors.

Inspired by the above observations, a natural intuition is to
employ graph analysis approaches in the ML detection process.
However, simply employing graph learning methods, which infer
features by its adjacent nodes, may lead to suboptimal results,
because there are also many direct connections between crimi-
nals and normal users. Thus, if we could decent learning from
organized criminal gangs, we may significantly improve the per-
formance of AML approaches.

3 THE PROPOSED METHOD

In this section, we introduce the architecture of the proposed
approach first and then present the procedure of the graph feature
learning layer. Finally, we introduce each component of the model
and the loss function of money laundering detection.

3.1 Architecture Overview

Figure 3 shows the general architecture of GAGNN for money-
laundering transaction detection. Generally, the model includes
three parts: 1) Community-centric encoder. We transform the
original transaction records into graphs and proceed to encode
the node using both topological and attribute-wise information. In
particular, we apply graph representation learning to generate node
features out of edge features, and then leverage convolution layers
to learn the embedding of the nodes, which are then fed into a fully
connected layer to produce node classification results. 2) Group
representation layer. We generate new edge representations and
train them with a shallow neural network to classify transactions.
As money-laundering usually appeals to organized behavior, we
introduce the group aggregation strategy to merge nodes that are
linked with transactions that are inferred as money laundering by
the encoder into groups. As such, we derive a new group user
transaction graph, which will then be fed into the community-
centric encoder to infer the group representations. 3) Prediction

network. The prediction network takes a joint optimization strat-
egy, which is defined by combining the node classification loss,
transaction classification loss, and group detection loss. In this
paper, the user transaction graph is not fully connect and the type
of prediction task is inductive. In the rest of this section, we will
introduce each module in detail.

3.2 Community-centric Encoder
Given the input transaction behaviors, we construct the user
transaction graph G = (V,E) firstly. Users are denoted as
nodes V = {v1, v2, · · · , vn} and transactions as edges E =
{e1, e2, · · · , em}, where n is the number of nodes and m means
the number of edges. The labels for all transactions are denoted
as Y . Also, if node vi is connected with a money-laundering
transaction, we label node vi as a negative sample, and otherwise
a positive label. A = (aij)n∗n is the adjacent matrix of the graph,
in which aij is 1 when there is an edge between node i and node
j, and 0 otherwise. In feature engineering, we construct features
for all transactions by concatenating a total of k features including
basic transaction attributes, such as amount, times, etc. For better
exploitation of the network structure, we consider feeding the net-
work with node-wise information instead of edge-wise semantic
information. We introduce deep graph representation learning here
to derive the attribute matrix X for nodes and the attribute vector
for node vi is defined as:

vi =
1

|Mi|
∑
j∈Mi

ej , (1)

ŷi =
1

|Mi|
∑
j∈Mi

yj , (2)

where Mi denotes the indexes of the edges connected with node
vi, ej denotes the feature vector for the j-th transaction, yj denotes
the ground-truth label the j-th transaction. In our implementation,
the ground-truth label is reported by the bank card user and con-
firmed by financial domain experts of our collaborated financial
institutions. ŷi denotes the suspicious money laundering label that
is used for model training. In this way, the attribute vector for
node vi will be aggregated from its connected edges, and the label
for node vi denotes whether node vi has been involved in previous
ML transactions. Figure 4 shows the process of deriving node-wise
representations from the edge-wise features.
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In recent years, researchers have also been working on ex-
tensions of graph learning. Drawing on ideas from networks
such as convolutional networks, recurrent networks, and deep
autoencoders, researchers have realized that mechanisms such as
convolution, recursion, and attention can also be introduced into
graph neural networks. For example, convolutional networks have
performed well in the field of computer vision, and inspired by
convolutional networks, various graph convolution methods have
emerged in recent years to introduce the concept of convolution
into graph neural networks. Spectral-based graph convolution
networks have been continually refined and improved, and as
spectral methods typically process the entire graph at the same
time and are difficult to scale to large graphs, spatial-based
graph convolution networks have started to develop rapidly. The
principle of these methods is basically the same, which is to
perform convolution directly on the graph structure by aggregating
information from the nearest neighbor nodes with ignoring the
grouped (community) characters. Thus, inspired by Jin et al., [18]
and Liu et al.,’s work [19], we leverage the graph attention layer
(GAT) by extending the Markov random fields (eMRF) as the
encoder of the graph network, which is devised for community-
aware detection. In particular, we first build two layers of GAT,
which can be mathematically represented as:

X(2) = A(1)(A(0)X(1)H(0))H(1),

A
(l)
ij =

exp(e(l)ij )∑
k∈N (i) exp(e(l)ik )

,

e
(l)
ij = LeakyReLU(α(l)[z

(l)
i ||z(l)j ])

(3)

where A(l) denotes the attention matrix of the l-th GAT layer,
X(1) denotes the input node attribute matrix, and α(l) denotes
the attention weight of the l-th GAT layer. z(l)i denotes the output
vector of the linear transformation of the l-th GAT layer. H(0)

and H(1) are the parameters to be trained in this model. In this
case, we transform the matrix A to incorporate the network with
topological information as well as include the attribute matrix for
the network to learn semantic information.

So far, the model has obtained a result matrix X(2) that is
able to classify the nodes. The GAT can only obtain a relatively
coarse classification result as it lacks the smoothness constraint
to reinforce the group-aware neighboring nodes. We introduce the
extended Malkov random fields (eMRF) with a graph attention
layer. The essential of the Markov random field is the energy
function, which consists of a unary potential function and a
pairwise potential function. The Markov random field model
simulates and simplifies the “one shot, all shot” nature of graph
networks, based on which the unary potential function obtains
the node classification probability from the graph convolutional
network and measures the node classification result. The pairwise
potential function is used to describe the relationship between
nodes, encouraging similar nodes to be assigned the same label
and nodes that differ more to be assigned different labels.

Particularly, the eMRF layer takes the coarse classification
result from GAT as input, and considers nodes as different
communities, encouraging the network to assign similar labels for
nodes in the same community. Therefore, eMRF layer mines the
inherent community relation between nodes and thus generating
smooth classifications. In other words, in order to complete the
calculation of the pairwise potential function, it is necessary to
define the similarity of nodes, so that the higher similarity between
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GCN #2

eMRF
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MLP
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Gang detection
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Fig. 4. The process of node-wise representation learning.

2 nodes is, the greater the forces will exert between them, resulting
in closer labels being assigned to the 2 nodes. We modify the
unary potentials and the pairwise potentials in MRF as GCN
to measure both the topological and attribute similarity between
nodes. Therefore, we propose the unary potentials and the pairwise
potentials in eMRF to measure both the topological and attribute
similarity between nodes. γ(vi, vj) is defined to measure the
attributes’ similarity between node vi and vj as

γ(vi, vj) = β ∗ ϵ(vi, vj) + (1− β) ∗Ri(ζ(vi, vj)), (4)

where β is a tradeoff parameter that balances topology and
attributes. ϵ(vi, vj) =

didj

2e − aij (di is the degree of node vi and
e is the number of edges). ζ(vi, vj) denotes the cosine similarity
between the attributes of node vi and vj , Ri will then apply
the regularization across all pair of ζ(vi, vj). Then the proposed
pairwise potentials can be defined as:

Ψ(vi, vj) = −1σ(vi,vj)γ(vi, vj), (5)

where σ(vi, vj) = 1 when vi and vj are labeled the same cate-
gory, such as negative or positive simultaneously. σ(vi, vj) mea-
sures the cosine similarity between the labels of nodes (vi, vj).
The rationale is that when two nodes share the same label, the
similarity between their attributes often appeals to be higher and
otherwise lower. −1σ(vi,vj) is introduced to meet our expectation,
as it turns γ(vi, vj) negative and therefore makes the pairwise
potential small when two nodes are labeled differently.

The unary potential for node vi is defined as ϕ(vi) = −p(vi),
where −p(vi) denotes the possibility of node vi being labeled as
positive given the results coming from GCN layers. Combining
the unary potentials and pairwise potentials, the energy function
for eMRF can then be represented as:

E(C|A,X) =
N∑
i=1

ϕ(vi)−
∑
i ̸=j

Ψ(vi, vj) (6)

In order to transform the energy function and fit it into the
GCN network, we employ mean-field approximation and it can be
mathematically formulated as:

X(3) = (X(2) − ΓX(2)H(2)) (7)

where H(2) are the parameters to be trained, and Γ =
(γ(vi, vj))n∗n. Z , the output of community-centric, is the node
embedding of the Graph G.

As presented above, the GCN encoder serves to incorporate
topologically and attribute features. In our implementation, fully
connected layers act as the classifier after the community-centric
encoder generates the embedding of nodes. In practice, we adopt
a shallow multi-layer perception (MLP) network, which can be
represented as:

X(4) = sigmoid(NNt(X
(3),Wt)) (8)
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where NNt is a fully connected network with sigmoid activation
and parameters Wt. X(4) = xijn∗2 denotes the binary classi-
fication result for all nodes, which represents the probabilities
of a node involved in money laundering. Finally, we reach the
node classification loss using cross-entropy based on the encoder
classifying the node:

Lnode =
1

n

n∑
i=1

yi log(pi) + (1− yi) log(1− pi) (9)

where yi denotes the actual label for node vi and pi denotes the
predicted label for node vi.

3.3 Group Representation Layer
As the main task of our work is to predict the money laundering
transaction, we then proceed to construct edge representations.
Suppose that node vi and node vj are connected by edge ei, we
concatenate the embedding of vi, vj and basic features of the edge
to update the representation of edge ei, where e′i = [Zi, Zj , l]
and Zi,Zj refers to the embedding of node vi,vj ; l refers to some
basic features for an edge. Then, we fed the updated representation
into an MLP prediction network for the classification task. The
transaction loss is defined as:

Ltrans =
1

m

m∑
i=1

yi log(pi) + (1− yi) log(1− pi) (10)

where yi denotes the ground-truth label of the i-th transaction and
pi denotes the predicted label of the i-th transaction.

In practice, as described above, money laundry often comes
with organized activities, which highlights the importance of
aggregating nodes and regards them working as a group. Hence,
we introduce a policy to achieve node aggregation: if the MLP
prediction network labels a transaction between node vi and vj as
money laundry, we believe that node vi and vj may be conducting
money laundry together and then aggregate them into a group.

In real practice, it’s noted that money laundry often comes with
organized activities, which highlights the importance to aggregate
nodes and considering them to work as groups. Our previous
observation found that the money laundering transactions were
not sparsely distributed throughout the whole user transaction
graph, but were concentrated between some individual accounts.
In this case, it is possible to make a preliminary presumption
about the gang nature of money laundering transactions. The
nodes in the graph can be divided into 2 groups, namely ML
gang members and normal accounts, although there may be some
vague connections between the 2 groups. Traditional detection
method faces a major challenge when analyzing this case, as
they are unable to detect group-level transaction behavior from
a higher dimensional perspective. Hence, we introduce a policy to
achieve node aggregation: if the MLP prediction network labels a
transaction between node vi and vj as money laundry, we believe
that node vi and vj may be conducting money laundry together
and then aggregate them into a group.

By implementing this across the whole graph, we reconstruct
the original network to a new Graph Ĝ = (V̂ , Ê). We call them
as node groups V̂ = {v̂1, v̂2, · · · , v̂n′} in Ĝ, which can either
be an aggregated group node or a single node that doesn’t belong
to any groups. n′ denotes the number of groups. We introduce
Mn′n to record the relationship between groups and nodes where
Mi denotes all the indexes of the nodes belonging to the group
v̂i. Afterward, we update the node feature matrix X̂ for Ĝ by

employing element-wise summation on nodes that belong to one
group. Specifically, for group v̂i:

v̂i =
1

|Mi|
∑
j∈Mi

vj , (11)

where X̂ contains the feature vectors for n′ groups. Finally,
we feed X̂ and Ĝ into community-centric again, which can be
mathematically represented as:

X̂(2) = (Â(ÂX̂(0)H(0))H(1))

X̂(3) = (X̂(2) − ΓX̂(2)H(2))

X̂(4) = sigmoid(NNt(X̂
(3),Wt))

(12)

3.4 Prediction Network
In the downstream prediction task, we introduce the group-
level loss Lgroup computed by learned embeddings of the group
representation layer. In comparison to the node-level loss Lnode

and the transaction-level loss Ltrans, Lgroup here is designed to
emphasize the detection of organized money-laundering behaviors
in the transaction, which is defined as:

Lgroup =
1

n′

n′∑
i=1

ŷi log(p̂i) + (1− ŷi) log(1− p̂i) (13)

where ŷi denotes the ground-truth label for group v̂i (if group vi
is an aggregated group, ŷi = 1 and otherwise ŷi = 0) and p̂i
denotes the predicted label for group v̂i. By minimizing the value
of Lgroup, the designed model could perform better in terms of
detecting organized suspicious money laundering activities.

Finally, we design the loss L of the detection network by
a joint combination of group representation loss Lgroup, node
classification loss Lnode and transaction classification loss Ltrans,
which is formulated as:

L = ηLgroup + λLnode + ζLtrans (14)

where η, λ and ζ denote the hyper-parameters to control the
importance of the three losses. They are determined by cross-
validation and we employ a joint optimization strategy to train the
proposed method. By combining the Lnode, Ltrans and Lgroup,
the detection network could learn a comprehensive capacity to
address the organized money-laundering activities, in which node-
level loss Lnode represent the risk of whether the user (initiators or
receivers of the transactions) involves money-laundering criminal.
Ltrans could guide the model to better infer transaction-level risk
and Lgroup enables our proposed method the capacity to detect
suspicious transactions with an organized-action perspective. Our
collaborated domain experts confirm that all components are
essential in real-world empirical investigation scenarios, which is
also reported by existing studies [20], [21]. Our proposed method
can be optimized through the standard stochastic gradient descent-
based algorithms. In this paper, we used the Adam optimizer [22]
to learn the parameters. We set the learning rate to 0.001 and batch
size to 128 by default.

3.5 Complexity Analysis and Implementation
The optimization objective function involves all the nodes and
edges in the graph, which is computationally inefficient for large-
scale graphs. Therefore, we leverage node and neighbor sampling
strategies to limit computation costs. Especially for high-degree
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TABLE 1
The statistics information of the dataset.

Statistics Items Week 1 Week 2 Week 3
Suspicious Trans. 101,524 100,293 100,657
Legitimate Trans. 1,753,355 1,691,267 1,636,082
Total Trans. 1.85M 1.79M 1.74M
Suspicious Nodes 9,536 8,985 9,052
Max. Degree 837 628 790
Avg. Degree 2.859 2.907 2.813

nodes, we sample the neighbor nodes according to the Bernoulli
distribution with the same parameter. Specifically, we use a part
of the graph to train our model in each training step. Sampling a
series of nodes in Lnode and Lgroup requires O(|V |) time, where
|V | denotes the number of nodes. Afterward, sampling a series
of neighbors requires O(T |V |) time, where T is the maximum
number in neighbors sampling and T << |E|. |E| denotes the
number of edges. For each step, eMRF requires N2

b times for
correlation calculation, where Nb is the batch size. Therefore, the
complexity of node-level optimization is O(N2

b T |V |), which can
be simplified to O(|V |) as Nb and T are constant numbers. For the
optimization of Ltrans, sampling on a sequence of edges requires
O(|E|) time. Finally, we reach the overall time complexity of
GAGNN as O(|V | + |E|), linear to the number of nodes and
edges, demonstrating that our proposed method is computing
efficient for large-scale graphs.

In the implementation, the proposed method is trained offline
with historical records regularly. For example, the model is trained
every night in the industry scenario, which requires 1.5 hours
to complete the learning phase on 60 million samples with four
pieces of Telsa V100 GPU. The trained model is then leveraged for
online prediction on the next day. The corresponding user trans-
action graph and features are stored in an in-memory database.
In the prediction phase, when a new transaction is issued, the
model could effectively retrieve and update the adjacent graph
component and features from the in-memory database. Then, the
retrieved adjacent graph structures and features are employed for
online prediction by the offline-trained model. Finally, the new
transactions are used for model training each day so that the model
can be up-to-date by learning from new data. As we only leverage
the transaction and user attributes as features, the retrieve and
update in-memory database process could be very efficient.

4 EXPERIMENTS

In this section, we conduct extensive experiments for evaluating
the effectiveness of our proposed methods. We first report sta-
tistical information of our dataset and implementation details in
experimental settings. Then, we present the experimental results
of GAGNN compared with other baselines. Finally, we report the
result and observations of case studies in the last subsection.

4.1 Experimental Settings
4.1.1 Datasets
The experiment dataset includes user transactions from
06/09/2021 to 26/09/2021, which is collected from UnionPay.
The suspicious money laundering transaction is labeled by fi-
nancial risk experts with the help of auxiliary process automa-
tion tools. We divide the data into three weeks with Week 1
(06/09/2021-12/09/2021), Week 2 (13/09/2021-19/09/2021), and
Week 3 (20/09/2021-26/09/2021). There are about 101 thousand
labeled suspicious records, accounting for only approximately 5%
of the collected 1.8 million transactions each week, which is still
a small part of nearly 40 million entire records. In this paper,

Week 1 Week 2 Week 3
(a) Recall @P0.7 

0.80

0.85

0.90

0.95

R
ec

al
l

GAGNN-trans GAGNN-nogrl GAGNN-noend GAGNN-all

Week 1 Week 2 Week 3
(b) Recall @P0.8 

0.75

0.80

0.85

0.90

R
ec

al
l

Week 1 Week 2 Week 3
(c) Recall @P0.9 

0.70

0.75

0.80

0.85

R
ec

al
l

Week 1 Week 2 Week 3
(d) AUC Value

0.90

0.92

0.94

0.96

0.98

AU
C

Fig. 5. The ablation study results of our proposed method. We remove
each component in turn (GAGNN-trans/nogrl/noend) and compare them
with the full version of the model (GAGNN-all).

we use the down-sampling method on legitimate transactions to
deal with this highly imbalanced problem. In particular, we select
all users who have ever been involved in money laundering and
all their corresponding historical transactions. Then, we down-
sample from normal users who have not experienced any money
laundering activities and then extract all the transaction records of
sampled users. We employ the 70% of the data for training and the
rest part as a test set week by week. Table 1 reports the detailed
statistics of the dataset.To the best of our knowledge, we did not
find other real-world bank card transaction datasets with human-
annotated money laundering labels. This experiment is conducted
on one dataset, and even though it is real-world and large-scale, the
results may be limited in the current data distribution and patterns.

4.1.2 Compared Baselines

We employ the following widely used approaches in the banking
industry as baselines to highlight the effectiveness of our proposed
methods:

• LR: Logistic regression (LR) model [23] is widely used method
in financial industry. We apply L2 normalization and set λ = 1,
tolerance for stopping criteria to 1e-4 and max iteration to 1000
and Follow the-regularized-leader (FTRL) for optimization.

• GBDT: Gradient boosting decision tree [24] is a popular en-
semble learning method for classification, which has proved
effective in suspicious transaction detection. We set the max
depth to 3, The number of boosting stages to 500.

• SVM: Support vector machine [24] has become an important
classification methods, which has proved effective in fraud
transaction detection. We set the learning rate to 0.01.

• Fuzzy Rule: [25] A fuzzy rule method that captures human
domain knowledge and model non-linear mapping of input-
output space. We set the rules according to the recommendation
by our collaborated domain experts.

• GraphSAGE: [26] A framework for inductive representation
learning on large graphs. GraphSAGE is used to generate low-
dimensional vector representations for nodes, and is especially
useful for graphs that have rich node attribute information.

• GCN: [27] A graph convolutional network for supervised learn-
ing (node and edge classification) on graph structure.
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TABLE 2
The experimental results of our proposed GAGNN in suspicious money laundering transaction detection, compared with the wide-used benchmark

methods in the banking industry. We report the results of AUC and recall at different precision levels.

Methods Week 1 Week 2 Week 3
R@P0.6 R@P0.7 R@P0.8 R@P0.9 AUC R@P0.6 R@P0.7 R@P0.8 R@P0.9 AUC R@P0.6 R@P0.7 R@P0.8 R@P0.9 AUC

LR 0.7736 0.7542 0.6938 0.6246 0.8356 0.8059 0.7771 0.6759 0.6173 0.8164 0.7851 0.7542 0.7057 0.6340 0.8396
SVM 0.7790 0.7563 0.7293 0.6553 0.8440 0.8333 0.8018 0.7339 0.6408 0.8504 0.8394 0.7981 0.7304 0.6788 0.8613
GBDT 0.7814 0.7625 0.7416 0.6785 0.8878 0.8362 0.8071 0.7483 0.6872 0.8696 0.8427 0.8093 0.7777 0.6913 0.8725
Fuzzy Rule 0.7791 0.7554 0.7279 0.6557 0.8430 0.8152 0.7541 0.6958 0.6443 0.8240 0.7901 0.7591 0.7208 0.6594 0.8483
GraphSAGE 0.7813 0.7621 0.7312 0.6923 0.8942 0.8371 0.8051 0.7478 0.6854 0.8672 0.8432 0.8102 0.7639 0.6909 0.8832
GCN 0.7952 0.7829 0.7453 0.7001 0.8993 0.8663 0.8209 0.7561 0.6902 0.8734 0.8616 0.8329 0.7716 0.7025 0.8902
GAT 0.8472 0.8341 0.7875 0.7148 0.9149 0.8982 0.8441 0.7687 0.6945 0.8802 0.8854 0.8509 0.7752 0.7103 0.9011
Graphormer 0.8441 0.8319 0.7841 0.7113 0.9088 0.8927 0.8432 0.7626 0.6933 0.8791 0.8843 0.8512 0.7749 0.7100 0.9003
Graphconsis 0.8491 0.8381 0.7892 0.7285 0.9181 0.8949 0.8551 0.7742 0.7152 0.8936 0.8919 0.8583 0.7814 0.7284 0.9142
Care-GNN 0.8519 0.8393 0.7914 0.7396 0.9199 0.9001 0.8632 0.7795 0.7193 0.8987 0.9068 0.8658 0.7969 0.7350 0.9185
PC-GNN 0.8587 0.8403 0.7987 0.7439 0.9242 0.9074 0.8712 0.7874 0.7261 0.9103 0.9195 0.8721 0.8159 0.7571 0.9266
GAGNN 0.9474 0.9145 0.8772 0.8140 0.9641 0.9381 0.9144 0.8682 0.8046 0.9602 0.9650 0.9301 0.8950 0.8204 0.9653

• GAT: [28] A well-known graph neural network-based model
with attention mechanism for graph learning. We set the atten-
tion head k to 5, the batch size to 128.

• Graphormer: [29] A transformer-based attention mechanism for
large-scale graph learning.

• Graphconsis: [30] A graph-based financial fraudsters detection
model, which learns the relation attention weights associated
with the sampled (filter the inconsistent neighbors) nodes. We
set the learning rate to 0.001 and batch size to 128.

• Care-GNN: [31] A camouflaged and grouped behavior detection
model by enhancing the GNN aggregation process with unique
modules against camouflages. We set the parameters as the
original paper recommended.

• PC-GNN: [32] A Pick and Choose Graph Neural Network
for node-level supervised learning on graphs. PC-GNN picked
nodes and edges with a devised label-balanced sampler to
construct sub-graphs for mini-batch training.

• GAGNN-trans/noend/nogrl: Our model has several variations:
In GAGNN-noend, the community-centric encoder is not em-
ployed. We directly fed transaction attributes into the MLP
prediction network. In GAGNN-nogrl, the group representation
layer is not employed. In GAGNN-trans, we only employ the
transactions for feature learning.

• GAGNN-all denoted the full model proposed in this paper. We
use the GCN and eMRF to encode the nodes and concatenate
edge features together to construct edge features, and train them
by the joint optimization.

4.1.3 Evaluation Metrics and Parameter Settings
We evaluate the performance of the proposed approach by AUC
and R@PN . The first metric AUC is defined as the area under the
ROC curve. Compared with the trade-off of precision and recall,
we can more directly distinguish which method performs better
with AUC. The second metric R@PN indicates the recall rate
when the precision rate equals N . As the results of suspicious
money laundering transaction detection are critical for financial
institutions, a high precision rate is generally required. In the
experiment, we set N according to industry demands in order to
measure the ability of detected top-ranked suspicious transactions.
The higher score of both the AUC and R@PN indicate the higher
performance of the methods.

In this experiment, we prefer to use the originally proposed
parameters for each baseline method. As to the implementation
of GAGNN-all, the number of hidden units of GAT#1 is set at 64
so that the model will be scalable facing large-scale datasets. In
eMRF layer, β is introduced and set at 0.44 to balance topological

TABLE 3
The AUC value of employing different graph learning methods as the

community-centric encoder.

Methods Week 1 Week 2 Week 3
GAT 0.9306 0.9349 0.9483
GraphSAGE+eMRF 0.9448 0.9413 0.9439
GCN+eMRF 0.9603 0.9571 0.9634
Graphormer+eMRF 0.9615 0.9592 0.9639
GAT+eMRF (GAGNN) 0.9641 0.9602 0.9653

similarity and attribute-wise similarity. The unit of NNt is set at
128 to extend the original node feature into higher dimensional
features. The experiments are conducted on a server with four
3.6GHz Intel Cores and 24GB RTX 3090 GPU.

4.2 Suspicious Money Laundering Detection
In this section, we evaluate the accuracy of suspicious transaction
detection of money laundering, which is one of the main tasks
of this paper. The money laundering label is annotated at the
transaction level instead of the user level. Consequently, this is
an edge classification problem here with group-aware demands.
We compare our method with the widely-used approaches in the
banking industry (LR, SVM, GGDT, Fuzzy Rule), state-of-the-
art graph learning baselines (GraphSAGE, GCN, GAT, Graph
Transformer, Graphconsis, Care-GNN and PC-GNN). We report
the AUC score and the R@PN (recall at different precision level)
value with different numbers of N, from 0.6 to 0.9.

Table 2 shows the accuracy report of eleven baseline methods.
As we can see, the shallow methods (LR, SVM, and Fuzzy
Rule) cannot achieve satisfactory results, as reported in lines 1,
2, and 4. GBDT performs better than shallow approaches by
ensemble learning on basic classifiers, with an average of 2-4%
improvements. With the help of deep graph representation and
attention mechanism, graph-based methods boost the prediction
accuracy by over 6% improvements, which strongly demonstrates
the effectiveness of leveraging the graph feature in money laun-
dering detection. The last three baselines are better that GAT and
PC-GNN perform better than Care-GNN and Graphcosis, which
shows that sub-graph structure is essential for suspicious money
laundering detection. According to the precision increase from
0.6 to 0.9, the recall value gradually decreased. The last line
reports the result of our proposed method. GANN is considerably
superior to all baselines and the improvements are more significant
compared to well-known industry benchmarks, from averaged
AUC from 85% to 96%. The R@PN is also greatly improved
with a recall score of 0.8, boosting from 72% to 86%, and a
recall score of 0.9, boosting from 65% to 80%. Higher accuracy
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Fig. 6. The precision@k of each test window in the organized money laundering detection experiment. The x-axis denotes the top k% of predicted
ML suspicious transactions and y-axis means the precision of the ML groups.

of R@PN shows that our proposed GAGNN could detect more
suspicious money laundering transactions and keep a high-level
precision simultaneously. This capability is crucial for real-world
applications, proving the effectiveness of our proposed method in
money laundering detection.

4.3 Ablation Study
Figure 5 reports the result of three variations of our proposed
model, GANN-trans, GANN-nogrl and GANN-noend, compared
with the full version of GANN. It is clear that these variations are
not performed well compared with GAGNN-all, proving the ef-
fectiveness of our proposed community-centric encoder and group
representation layer. Please note that GAGNN-noend performs
better than GAGNN-nogrl, which means the group representation
layer contributes more importantly to suspicious transaction detec-
tion, which demonstrates the effectiveness of the main contribution
of our proposed method.

In addition, we also evaluate the effectiveness of this paper’s
proposed community-centric encoder by replacing the graph fea-
ture learning layer with GCN, GraphSAGE and Graph transformer.
Table 3 reports the AUC value of each method in three weeks test
window. As we can see, employing GAT alone cannot achieve
satisfactory performance, demonstrating the essence of the pro-
posed eMRF module. GAT+eMRF achieves the best performance
compared with the rest baselines. The reason might be that a
higher-capacity model, like the graph transformer, also leads to
a higher risk of overfitting. The GAT is the best trade-off between
the model’s capacity and generality in this task.

4.4 Organized Money Laundering Detection
As described above, another major task of this work is the
ability of the model in detecting organized money laundering
activities. In this experiment, we evaluate the performance of
group money laundering behaviors; in other words, unlike the
previous transaction-level detection tasks, organized behaviors are
aggregated as groups in this test. We utilize the precision of
predicted top k percentage of confident suspicious transactions for
evaluating the organized money laundering detection experiment.

In particular, we select the top 1% to 10% of most confi-
dent money laundering transactions by our proposed method and
compared baselines. Then, we aggregate the connected money
laundering suspicious transactions into groups until there are no
more ML nodes or edges connected to the group. Afterward, we
compute the predicted output with the actual label in groups and
marked them as true if more than 50% of nodes are involved in
the money laundering transaction. The threshold value of 50% was

TABLE 4
The accuracy of money laundering detection methods in different

groups, where Bi denotes the bridging nodes and Bd means bridged
nodes.

Methods Bi4 Bd4 Bi5 Bd5
LR 0.7090 0.5000 0.6185 0.7500
SVM 0.7636 1.0000 0.6597 0.8125
GBDT 0.8000 1.0000 0.7422 0.8750
Fuzzy Rule 0.7818 1.0000 0.7113 0.8125
GAT 0.8363 1.0000 0.8041 0.8823
Graphconsis 0.8545 1.0000 0.8267 0.9375
Care-GNN 0.8545 1.0000 0.8333 0.9375
PC-GNN 0.8727 1.0000 0.8400 0.9375
GAGNN 0.9090 1.0000 0.8659 0.9375

determined by domain experts with the help of cross-validation.
Finally, we could compute the precision of grouped money laun-
dering detection by each method in top k% of confidence.

Figure 6 shows the results of the organized money laundering
experiments on various baselines. The x-axis denotes the number
of top k-th confident results and the y-axis denotes the precision.
As can be seen from the chart, the top results keep sufficient
precision. The top 1% confident results receive a precision of over
55% for all the methods. In general, the precision of baseline
methods gradually decreases against the increase of k, that is
because the more samples predicted, the less confidence in the
model. From the three subgraphs of Figure 6, we observe that the
precision of logistic regression, SVM, and Fuzzy Rules are not
comparable to other methods. It is probably because the conven-
tional models do not include the graph features and in this experi-
ment, group representations are vitally important. Graph attention
networks (GAT) and GBDT perform better than the rest four
classical compared benchmark methods. The deep graph learning
and ensemble learning approaches are proved to be effective,
especially for deep graph learning, such as PC-GNN, Care-GNN,
and Graphcosis, which achieve the best performance in these
baselines. GAGNN performs significantly better than GAT across
all time periods and all the top k % confidence. The improvements
vary from 3% to 20%, which are more remarkable in the top 1
and 2%. This phenomenon proves the superior performance of
our methods in organized money laundering detection, with only
the top 1% of predictions, achieved averaging 85% precision, with
is significantly better than averaged 65% of precision by compared
benchmarks. The reason might be that with a group representation
layer and deep graph encoders, GAGNN could effectively learn
from the structures in organized money laundering graphs. The
essential and effectiveness of group representation layer and deep
graph encoders are demonstrated in addressing the organized
money laundering detection problem.
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Fig. 8. The visualization of different money laundering patterns and the
corresponding organized groups detected in real-world situation.

4.5 Case Studies

In this section, we report the case studies applying our methods
to an industry-level anti-money laundering system in Unionpay.
We select a typical transaction network and report the statistical
information of the predicted high-risk suspicious transactions and
visualize them in the empirical study. Figure 7a illustrates the
real-world money laundering user transaction graph, in which
there are three types of ML groups. 1) the grouped activities are
located in the top right of the figure, which contains complex graph
structures and preserves group-level activities obviously. We mark
them in the red circle. 2) denotes the money laundering gangs in
processing and are detail reported in Figure 7d. 3) emerging ML
gangs are marked at the bottom the Figure 7a and amplified in
Figure 7c. These types of gangs are three typical stages of money
laundering: emerging, processing, and grouped ML activities. The
main purpose of the anti-ML model is to detect these gangs in
the early stage. Meanwhile, we discover the most common ML
pattern in case studies and report them in Figure 7b. Normally,
the ML activities include source nodes and target nodes, who aim
to transfer money from source to target without being detected
by the anti-ML system. Therefore, there are a lot of bridge nodes
between sources and targets, as shown in Figure 7d, there are
over 100 bridge nodes involved in the ML activities. We define
bridged nodes, denoted as Bd, who have completed to transfer of
the money from sources to targets, and the bridging nodes, Bi,

denotes that received money from sources but have not transferred
it to the target nodes. As we can see, the gangs illustrated in Figure
7c and Figure 7d both follow this pattern, proving the effectiveness
of our proposed method in organized money laundering activities
detection. The pattern is also observed by pattern mining research
in the financial literature [9].

Then, we investigate the detection accuracy of bridging nodes,
which is critically important for anti-money laundering combat, as
well as the bridged node. Because we could take proper regulation
activities in advance once detect the bridging nodes in the emerg-
ing ML groups so that to cut the laundering procedure and prevent
criminal behavior consequently. As we can see, Figure 7c shows
a typical emerging ML group with only two bridged nodes (Bd4)
and over 50 bridging nodes (Bi4). Table 4 reports the accuracy of
detected ML suspicious activities of Bi4 and Bd4. Most methods
successfully detect 2 Bd4 nodes with an accuracy of 100%.
However, the accuracy bridging nodes Bi4 is much less than Bd4,
with only averaged 78% accuracy of baselines. Our methods show
significant advantages in this situation with the precision of 90.9%
in bridging nodes. According to the ML stage, this advantage is
more prominent with the precision of Bi5 improving near 25%
and Bd5 improving about 18% compared with logistic regression.
Our methods achieve the best performance in all groups and
the improvements is more significant in the bridging groups,
denoted as Bi4 and Bi5. At the same time, our proposed GAGNN
achieves at least as well as the most competitive benchmarks in
bridged groups, with the same accuracy of 93.75% in the Bd5
group with graph attention network. The superior performance
and the ability of pattern discovery of our proposed method in
the case study demonstrate its effectiveness in organized money
laundering activities. This means that the proposed approach will
be invaluable in offering constructive evidence and strong hint
information to financial regulators.

To further investigate organized money laundering patterns,
we visualize three typical types of suspicious structures in Figure
8. The first pattern, named “Star Pattern”, is shown in Figure
8a, which normally occurred during placement (shown in the left
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part of Figure 8d, diffusing the money from the source node) and
integration phase (the right part of Figure 8d, aggregating money
to target nodes). Figure 8b and 8e present the “Chained Pattern”
and its groups that transmit money from the source node to the
targets by various bridge nodes, forming numerous chains. The
chain pattern is more likely observed in the laying and laundering
phase. Figure 8c and 8f show the “Cyclic Pattern”, which is more
complicated than “Star” and “Chain” patterns. In a cyclic group,
the source node transmits money to the target while the target
also transfers back to the source through various bridge nodes. In
this process, the dirty money could be laundered by multiple steps
among masses of cyclic transactions. After empirical analysis with
the domain experts in the collaborated financial institution, we also
observed that “Chained Pattern” could consist of multiple “Star
Pattern”. At the same time, the “Cyclic Pattern” is the combination
of two or more “Chained Pattern”. Please note that the arbitrary
combinations of these patterns, which are also reported in previous
studies [33], [34], may lead to very intricate groups as shown in
Figure 8d, 8e and 8f. As a result, it is more urgent than ever to
develop a more powerful and flexible approach to fighting against
these organized criminals.

5 RELATED WORKS

This section presents a review of recent literature on money
laundering detection and graph learning in financial networks.

5.1 Money Laundering Detection

Money laundering is the act of disguising, concealing, and trans-
forming the illegal income obtained from a crime or other illegal
and illicit act to make it formally legal through various means
[35]. Therefore, Anti-Money Laundering (AML) detection has
always been of great significance to stabilize the financial market
[11]. Rule-based approaches are the most frequent and classical
ones in the financial industry. For example, Panigrahi et. al,
[36] introduced an intrusion to the database detection method
using different components, including a rule-based component and
Bayesian component. Rajput et. al, [37] proposed an ontology-
based expert-system that contain domain knowledge and a specific
set of rules to detect suspicious transaction. However, these rule-
based approaches rely heavily on expert knowledge, and hence are
easily circumvented and do not work well to detect new types of
money laundering crimes.

Machine learning algorithms were recently applied in AML,
which push the boundaries of traditional rule-based classifications
[11]. These methods can be classified into supervised learning
such as Decision Tree, SVM, and Random Forest; and unsuper-
vised learning such as clustering [38]. Clustering is often used
to group transactions into different clusters to detect patterns of
suspicious transaction sequences. Wang et. al, [39], for instance,
implemented Clustering With Slope (CLOPE) to group financial
data into transaction groups. However, clustering approaches ne-
glect the flows of transactions and relationships between accounts.
Other supervised machine learning algorithms have also been used
in AML tasks. Guevara et. al [40] compared several ML algo-
rithms and proposed a probabilistic graphical modeling technique
(PGM) as a Bayesian network for unsupervised data to detect
anomalies in Non-banking transactions. Savage [41] implemented
supervised learning using Random Forest and Supper vector
machine for AML tasks.

Different learning approaches have their own advantages and
disadvantages. The selection of models requires a trade-off be-
tween accuracy and interpretation [38], [42]. Models such as
neural networks and gradient boosting models are known as
black-box models. These black-box models often provide highly
accurate results but lack relatively in interpret ability, so such
deep learning-based data mining models are difficult to explain
the rationale behind their model design to financial institutions,
while the cost of training is often higher than rule learning [11],
[43]. On the other hand, white-box models such as decision trees
and linear regression [44], [45] have strong interpretability, and
cost less to explain the model, but the accuracy of their results
is generally poor and their performance cannot meet financial
standards. However, Given that money launderers are developing
newer methods and often commit crimes as organized activities,
The real performance of AML algorithms depends on their adapt-
ability and generalization capabilities. Also, current supervised
ML data mining techniques pay attention to identifying individual
anomalous transactions and thus will be less effective in the
context of detecting new patterns of money laundering activities.

5.2 Graph Learning on Financial Networks

Graph learning algorithms have been studied broadly in the
financial literature [46], [47], [48], [49], [50], [51], [52], such as
fraud detection [19], [53], [54], loan default prediction [55], [56],
anomaly detection [57], and blockchain analysis [58]. For example
Cheng et al., [59] proposed a spatial-temporal attention-based
graph network (STAGN) for credit card fraud detection which
learns the temporal and location-based graph features by a graph
neural network. Wang et al., [60] proposed a semi-supervised
attentive graph neural network, which utilized the labeled and
unlabeled data at the same time for fraud detection. With the
development of graph neural network, graph-based anomaly detec-
tion methods [61], [62], [63], [64] achieved remarkable progress,
which could also be leveraged to suspicious transaction detection.
For example, Wu et al., [65] introduced a graph learning-based
method for anomaly detection in the Industrial Internet of Things
(IIoT) applications. Goodge et al., [64] addressed the local outlier
detection by unifying a GNN-based message-passing framework.
But these works mainly focus on the individual abnormal node or
edge detection instead of grouped outliers. The existing models
on group-aware anomaly detection have been studied on tabular
and/or sequential data [66], [67], [68] using various techniques,
such as hierarchical Bayes model [69], [70], kernel-based model
[71], deep generative models [67] and autoencoders [72]. The most
similar of our work in the anomaly detection field is the abnormal
pattern [73], [74], community [75], [76] and subgraph detection
[77], [78], [79] on graphs. But to our best knowledge, these works
cannot perform well in the grouped money laundering detection
task because: 1) the annotated labels and label-supervised process
are essential for model training. Thus, we formulate the money
laundering detection problem as a supervised task. The anomaly
detection method could not adequately use the labeled information
and may consequently lead to sub-optimal performance; 2) sus-
picious behaviors are increasingly hidden due to their adversary
nature. Using generic anomaly detection approaches can hardly
handle this issue as these patterns are hidden behind labeled data.

The issue of money laundering exists and continues to threaten
the stability of the financial market for the past decades, fac-
ing the challenges of identifying suspicious money laundering
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transactions - huge and organized behaviors, changing money
laundering patterns to complex graph structures [80]. Graph neural
network allows for a straightforward way to represent financial
behaviors and describe relationships between fraudsters and illicit
transactions [81], [82], [83]. Researchers introduced the high-
performance graph analysis method recently to retrieve suspicious
transactions [9], [84]. But the method cannot infer the graph
feature in model training. Recently, graph learning-based suspi-
cious transaction detection methods [85], [86], [87] have been
leveraged for money laundering detection. For example, Weber et
al., [17] employs graph convolutional neural networks for forensic
analysis of financial data and infers that graph deep learning for
AML bears great promise in the fight against criminal financial
activities. Alarab et al., [88] proposed a graph-based long and short
memory (LSTM) model for anti-money laundering in blockchain
network. In the cryptocurrency literature, graph techniques are
widely utilized for money laundering detection [89], [90], [91]
and show the superiority in learning from transaction-level graphs
[92]. However, little research has been done to incorporate orga-
nized money laundering detection with group-aware graph neural
networks in a supervised learning paradigm.

6 CONCLUSION

In this paper, we propose the group-aware graph neural network-
based approach (named GAGNN) to detect organized money
laundering activities, a capital felony in the financial industry.
By extensive study in Unionpay, hosting national-wide card
transaction records, we observe the grouped (gang) behavior in
money laundering criminals and we devise GAGNN which could
learn from user transaction graph directly by a community-centric
encoder and deep group representation layer. We thoroughly
evaluate the proposed method in a real-world dataset compared
with widely-used benchmarks and achieve the best performance.
We also conduct empirical studies in the industry-level systems
and the superior performance of our method is strongly demon-
strated in detecting organized money laundering activities and
emerging ML groups. The ability of the proposed method to
address the challenges of organized ML criminals is proved in the
experiment. The idea of modeling suspicious transactions based
on group-aware deep graph learning can be applied widely in
organized behavior detection. In future work, we plan to explore
semi-supervised graph learning methods to learn from large-scale
unlabeled data, which we believe could enrich our capability in
addressing group-aware money laundering detection tasks.
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