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Electric power resources are essential for the efficient and orderly development of so-

ciety. Accurate power load forecasting is a key driver for the low-carbon upgrade of
power systems. Traditional forecasting methods often struggle to capture long-term de-

pendencies. Additionally, extracting complex nonlinear features from data remains a
significant challenge, making it challenging to meet the accuracy demands of modern

power systems. Besides, current deep learning-based forecasting methods cannot simu-

late multi-granularity power load data. To address these challenges, this paper presents
a Generative Pre-trained Transformer model, GPT4PLTS, designed for power data sim-

ulation and fine-grained power load forecasting. The model leverages the Transformer

architecture, incorporating the first six layers of the GPT decoder structure. It utilizes a
multi-head attention mechanism to extract temporal features and includes a time align-

ment layer to maintain the sequence of time-series data, addressing both short-term and
long-term dependencies. Extensive experiments are conducted on load observations from
2000 enterprises. The results demonstrate that GPT4PLTS achieves high accuracy in

data simulation and forecasts across different time granularities, particularly excelling

in short and medium-term predictions. Future research could focus on optimizing the
model structure to enhance the model’s generalization ability.

Keywords: Generative Artificial Intelligence, Power Load Prediction, Transformer, Time

Series Data.
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1. Introduction

As economies rapidly develop and urbanization accelerates, the dependence on elec-

tricity for residential life, commercial activities, and industrial production continues

to grow. Electricity is one of the cleanest, most efficient, safest, and highest-quality

renewable energy sources available 9. Therefore, to build a resource-efficient and

environmentally friendly society and to promote sustainable economic and social

development, it is essential to optimize electricity supply costs and accurately fore-

cast power load.

Accurate power load forecasting is crucial for effective electricity planning, re-

source allocation, and efficient management of power systems. Electricity suppliers

rely on load forecasts to develop contracting strategies, pricing strategies, trading

strategies, and economic assessments for individual users. The precision of these

forecasts directly affects pricing; inaccurate predictions can result in significant de-

viation costs. Precise short- and medium-term load forecasts ensure the safe and

stable operation of power systems and serve as the foundation for creating cost-

effective generation plans 46. For electricity consumers, reliable forecasts enable the

alignment of production schedules with electricity prices, thereby reducing opera-

tional costs 42.

In recent years, extensive research has been conducted to enhance the accuracy

of power load forecasting. Traditional methods, such as the Autoregressive Moving

Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA) mod-

els, have been the foundation of early load forecasting techniques. These methods,

while useful, often fall short in capturing the nonlinear and non-stationary nature

of power load data. For instance, Huang et al.19 improved the ARMA model by in-

corporating non-Gaussian processes, and Lee et al.22 enhanced the ARIMA model

using biorthogonal wavelets for spatial decomposition. However, these improve-

ments still struggle with the rapid external disturbances characteristic of power

load data. To address these limitations, modern machine learning methods have

been employed. Support Vector Machines (SVM)16 and Artificial Neural Networks

(ANN)37 have shown significant promise. Niu et al.26 utilized SVM combined with

an ant colony algorithm for load forecasting, while Selakov et al.28 enhanced SVM

with particle swarm optimization. In the realm of neural networks, Long Short-

Term Memory (LSTM) networks 17 have been particularly effective in handling

time series data, as demonstrated by Zheng et al. 50 in their short-term load fore-

casting model. Cheng et al. 6,23 leverage multi-modality graph neural networks to

predict future time series.

Building on the advancements of deep learning, generative models show vari-

ous applications such as image synthesis 24, text generation 38, and graph simula-

tion 44. In particular, Transformer architecture, with its attention mechanisms, has

revolutionized generative models and time series forecasting. Transformers excel

at capturing complex dependencies and have been successfully applied in various

forecasting tasks. For example, Du et al.10 combined LSTM and attention 33,31
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mechanisms for power load forecasting, and Geng et al.14 used K-Means clustering

with LSTM for load prediction. More recently, advanced models like Transformer-

GAN 11 have been explored to enhance the detection and prediction of anomalies

in power load data.

Despite these advancements, most existing works struggle to simultaneously ad-

dress the stochastic nature and event-driven impacts of power load time series data,

as well as its strong periodic characteristics. Specifically, existing power load fore-

casting work typically suffers from at least one of the following limitations: 1) Lack

of end-to-end power load time series data simulation; 2) Inability to capture the

full distribution of power load time series affected by events and user characteris-

tics; 3) Inability to provide accurate power load fluctuation predictions at multiple

granularities.

1.1. Motivations

To address these limitations on modeling power load time-series data, our research

is motivated by the following:

• Generative Pre-trained Transformers (GPTs) have demonstrated remark-

able performance in end-to-end modeling of sequential data, particularly

in natural language processing tasks. Despite their success, there has been

no application of GPTs in the end-to-end simulation of power load time

series data. This gap presents an opportunity to leverage the strengths of

GPTs in accurately modeling the complexities of power load data, which

exhibit both stochastic and cyclical patterns.

• Event features play a crucial role in influencing power load time-series data.

Events such as holidays, weather changes, and significant socio-economic

activities can cause substantial fluctuations in power demand. Therefore,

it is essential to model the complete power load time series pattern by

incorporating not only the inherent user characteristics but also the diverse

and impactful event features.

• Power load time-series data exhibit different trends and attributes at vari-

ous granularities, such as hourly, daily, weekly, and monthly levels. These

multi-granularity perspectives provide valuable insights into the power load

patterns over different time scales. However, existing models often fail to

provide simulated power load time series data at multiple granularities.

Addressing this issue is crucial for developing a versatile model. Such a

model must generate accurate predictions and simulations across diverse

time scales.

• The existing methodologies for power load forecasting often require ex-

tensive parameter fine-tuning, which can be resource-intensive and time-

consuming. There is a need for an efficient and simplified generative ap-

proach that can produce accurate power load time series data without

extensive fine-tuning processes. Such an approach would significantly re-
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duce the computational overhead and improve the usability of the model

in dynamic and rapidly changing environments.

• The effectiveness of any power load forecasting model is ultimately judged

by its performance in real-world scenarios. Therefore, it is imperative to

develop a model that not only excels in controlled experimental settings but

also demonstrates robust performance across diverse and unforeseen condi-

tions. This includes the ability to generate accurate and reliable predictions

in the presence of anomalies and irregular patterns, which are common in

power load data due to various external and internal factors.

1.2. Contributions

The main contributions of this paper are summarized as follows:

• We propose an end-to-end power load time series data simulation model

based on GPTs. To effectively represent power load data, we model the

complete power load time series pattern by incorporating learnable user

characteristics and event features into the decoder of the GPTs.

• In both the training and generating stages, we introduce multi-granularity

timestamp embeddings in both the encoding and decoding stages to encode

and to provide simulated power load time series data at multiple granular-

ities.

• We present an alternative, simplified, fine-tuning-free generative paradigm

that enables rapid generation of power load time series data through multi-

agent prompt engineering.

• Experimental results on thousands of entities and three popular evaluating

metrics demonstrate that our power load time series simulator outperforms

the previous best models on multi-granularity generation tasks.

• The results of the case study on power load events injection show that, our

model effectively captures the stochastic nature and event-driven impacts

of power load time series data while maintaining high prediction accuracy

across different time scales.

The remainder of this paper is organized as follows: Section 2 discusses the

related works on power load forecasting and generative artificial intelligence. Sec-

tion 3 presents our proposed method. Section 4 describes our experimental settings.

Section 5 details our experimental results. Section 6 provides our conclusion and

future directions.

2. Related Works

In this section, the works related with this paper will be discussed in three fields: 1)

traditional power load forecasting methods; 2) machine learning-based forecasting

methods; and 3) generative artificial intelligence.



November 16, 2024 13:10 output

Generative Artificial Intelligence Model for Multi-granularity Power Data Simulation 5

2.1. Traditional Power Load Forecasting

Traditional load forecasting methods are primarily based on statistical and time se-

ries analysis techniques, as power load inherently takes the form of time-series data.

These methods rely heavily on historical load data to predict future demand, often

overlooking external factors like weather, holidays, and economic changes. Common

traditional time series forecasting methods include the Autoregressive Moving Av-

erage (ARMA) model and the Autoregressive Integrated Moving Average (ARIMA)

model. 19 introduced non-Gaussian processes into short-term time series forecasting

by embedding cumulants and bispectra into the ARMA model, thereby enhancing

its performance and significantly improving load forecasting accuracy. 22 incorpo-

rated lifting schemes into the ARIMA model, using biorthogonal wavelets for spatial

decomposition. They split the load series into sub-series based on frequency, pre-

dicted these sub-series using the ARIMA model, and then combined them using an

inverse lifting scheme, outperforming traditional ARIMA models. 18 also proposed

a new Particle Swarm Optimization (PSO) method for identifying the Autoregres-

sive Moving Average with Exogenous Variables (ARMAX) model for hourly load

forecasting from one day to one week in advance. The PSO algorithm’s ability to

converge to the global minimum of complex error surfaces greatly improved the

precision of fine-grained time series forecasts. However, these traditional time series

forecasting methods are best suited for stationary series. Since power load data is

non-stationary and nonlinear, with rapid external disturbances affecting it, time

series methods can produce significant errors, highlighting their limitations.

2.2. Machine Learning-based Forecasting

Modern machine learning methods have gradually replaced traditional load fore-

casting techniques 4, becoming mainstream in power load prediction. These meth-

ods include Support Vector Machines (SVM) 16 and Artificial Neural Networks

(ANN) 37. SVM is a supervised learning algorithm that uses kernel functions, such

as polynomial and radial basis function (RBF) kernels, to map data into a high-

dimensional feature space, enabling it to find effective linear decision boundaries in

the original space. SVM is widely used in text classification, image recognition, and

bioinformatics. 26 used SVM combined with an ant colony algorithm to develop a

power load forecasting system, which processed large datasets by removing redun-

dant information, thus reducing SVM training data and overcoming the limitations

of large data volumes and slow processing speeds. 28 improved the SVM model with

a particle swarm optimization algorithm, adding a module to capture temperature

variations, which significantly enhanced the model’s learning ability and prediction

accuracy. However, the SVM’s prediction accuracy heavily relies on the design of its

kernel function, making it less adaptable to changes in load time series character-

istics and limiting its generalizability in real-world forecasting tasks. Additionally,

SVM can be computationally intensive and inefficient with large datasets. Artificial

Neural Networks (ANN) operate by adjusting the relationships between numerous
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interconnected nodes to process information. Some studies have optimized time

series methods using Kalman filtering combined with ANN, leveraging ANN’s non-

linear fitting capabilities and Kalman filtering’s ability to fit stable stage loads

to improve forecasting accuracy 39. Researchers have also introduced feedforward

neural networks for load forecasting in non-linear scenarios 5. Recurrent Neural

Networks (RNN), particularly Long Short-Term Memory (LSTM) 17 networks, are

commonly used in time series prediction. LSTM networks effectively address long-

term dependency issues, retaining past information to influence future outputs. In

recent years, LSTM has been widely applied in short-term load forecasting. 50

utilized LSTM to capture long-term dependencies in time series data for next-day

load consumption prediction, achieving better results than traditional time series

methods. RNNs can also be combined with other deep learning models to improve

prediction accuracy under complex conditions. For instance, hybrid models combin-

ing LSTM or Gated Recurrent Unit (GRU) 7 networks with Convolutional Neural

Networks (CNN) 21 handle two-dimensional spatiotemporal features, leveraging his-

torical load and meteorological data to capture the nonlinearity, non-stationarity,

and temporal characteristics of load data.

Recently, advanced neural network architectures have been introduced to fur-

ther improve the forecasting accuracy and efficiency of time series models. Temporal

Convolutional Networks (TCN) 1 extend traditional convolutional neural networks

(CNN) by leveraging dilated convolutions to capture long-range dependencies in

time series data. This approach enhances the generalization ability of the model

while preserving the sequential order of the data. Similarly, DLinear 48 combines

linear models with deep neural networks, using a linear layer to preprocess input

data before applying a multi-layer neural network to learn complex nonlinear trans-

formations, enabling better interpretability and performance for sequence modeling.

Transformer-based models have also gained traction in load forecasting tasks. In-

former 51 incorporates a sparsity constraint in the self-attention 32,30,34 mechanism,

allowing it to efficiently handle long sequences with varying lengths. By modeling

long-term dependencies with a generative process, Informer demonstrates robust

performance in long-term prediction tasks. Crossformer 43, on the other hand, in-

troduces cross-channel attention mechanisms that enhance feature extraction and

facilitate learning complex relationships in sequence data while retaining the Trans-

former’s original self-attention mechanism. These innovations allow Crossformer to

effectively model both local and global dependencies, further improving forecasting

accuracy.

The adoption of these advanced models underscores the shift toward leverag-

ing sophisticated machine learning architectures to address the challenges posed by

power load forecasting tasks. By capturing temporal, spatial, and feature-wise de-

pendencies, these methods provide a foundation for developing robust and adaptive

forecasting systems.
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2.3. Generative Artificial Intelligence

On the foundation of Recurrent Neural Networks, the Transformer architecture,

centered on the attention mechanism, has revolutionized generative models, signifi-

cantly enhancing feature processing capabilities and laying the groundwork for the

era of large models. GPU-accelerated software and applications 29,41 also boosts the

advance of generative artificial intelligence. Generative models with large param-

eters and robust learning capabilities can handle and understand complex feature

relationships. In natural language processing, generative models have demonstrated

impressive performance. Due to their flexibility and scalability, these models are be-

ing applied to time series forecasting tasks.

The core of the Transformer 38 is the attention mechanism. 10 combined LSTM

and attention mechanisms to improve the screening of anomalous data points in

power load datasets, enabling automatic power load forecasting. 14 used K-Means

clustering and LSTM models to predict power load. 25 developed an LSTM and

seq2seq model to extract historical power load data features, deriving load data

trends and considering various factors’ impacts on the grid for short-term load

forecasting. Generative Adversarial Networks (GAN) have also been explored for

power load forecasting. 11 proposed an improved Transformer-GAN model to better

capture trend features for anomaly detection and identification in load data.

With the ongoing development of large models, researchers are leveraging their

powerful representation and generalization capabilities to extract key features from

vast datasets and capture complex temporal patterns. By learning and modeling

historical load data and meteorological data end-to-end, large models address tra-

ditional methods’ challenges of high data dimensionality and complex temporal

correlations, improving prediction accuracy and stability. This advancement pro-

vides more reliable support for power system scheduling and operation. 52 in-

troduced the concept of Freezing Pre-trained Transformers (FPT), retaining the

residual blocks’ self-attention and feedforward layers in pre-trained language or

image models, and fine-tuning them for time series tasks to evaluate predictive

performance. 3 improved prediction accuracy by preprocessing data with time

alignment and using a two-stage fine-tuning method based on the pre-trained GPT

model. 45 explored a novel time series prediction approach by converting numer-

ical sequences into language prompts and leveraging pre-trained language models,

showcasing better generalization capabilities. To fully capture time series data char-

acteristics, 36 proposed constructing an embedding layer tailored for time series

data before model input, improving representation and prediction accuracy. 47 used

instruction fine-tuning based on LLMs for financial time series prediction, main-

taining high interpretability and increasing the model’s relevance. 35 highlighted the

challenges large language models face with numerical or temporal data, suggesting

methods like proper time data labeling and multi-modal adapters to improve task

performance. 15 proposed encoding time series as numerical strings to enhance

LLMs’ performance in digit tokenization and uncertainty calibration. 2 introduced
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the TEMPO framework, leveraging two inductive biases in time series tasks for

effective representation and learning. 20 proposed the Time-LLM framework, com-

bining prompt-as-prefix techniques for robust time series prediction. 49 presented

a Transformer-based multi-variate time series representation learning framework,

outperforming current best methods across various datasets.

In addition to these pre-trained model-based methods, researchers are develop-

ing foundation models trained on extensive time series datasets. These models learn

time series representations from large datasets and transfer these representations

to downstream tasks. 12 introduced the multi-scale Temporal Transformer (TTM),

the first micro pre-trained model (with one million parameters) for effective transfer

learning on public TS data. 8 proposed a model pre-trained on a large time series

corpus using a patch decoder-style attention model, performing well across different

prediction time granularities. 13 presented the TimeGPT model, the first founda-

tion model for time series, capable of generating accurate predictions for unseen

datasets, demonstrating excellent zero-shot inference performance. 27 introduced

the Lag-Llama model, a general-purpose univariate probabilistic time series fore-

casting model trained on extensive time series datasets, showing strong zero-shot

prediction capabilities for unseen “out-of-distribution” time series data.

Our Approach. Unlike the aforementioned advanced deep learning models such

as LSTM, CNN, and Transformer variants, our method employs a GPT-2 decoder

architecture enriched with spatiotemporal embeddings to model time series data.

This design enables our model to effectively capture intricate temporal dependencies

while integrating spatial features, ensuring enhanced forecasting performance in

complex real-world scenarios.

3. Proposed Methods

In this section, we will introduce the preliminaries of power load forecasting and

our proposed Generative Pre-Trained Transformer for Power Load Time Series

(GPT4PLTS).

3.1. Preliminaries

Electric power load forecasting is a type of time series prediction that involves an-

alyzing historical time series data to identify development trends and subsequently

predict possible load values at future time points or over a certain period. Given a

single variable time series Xt = {x[0], x[1], ..., x[t]}, the input data window size is

W , defined as a vector Xt = {x[t−W + 1], x[t−W + 2], ..., x[t]}, where x[t] is the

observed value at time t, and W is the window size.

The goal of the forecaster C is to predict the load value within the next T

time steps, with the prediction value defined as x̂t+1, x̂t+2, ..., x̂t+T . The prediction

function can be formulated as:

X̂t+1:t+T = C(Xt; θ) (1)
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Table 1. Notation used in the electric load forecasting model

Notation Description

Xt Single variable time series data

x[t] Observed value at time t

W Input data window size

Xt Input data vector: {x[t−W + 1], x[t−W + 2], ..., x[t]}
T Number of future time steps for prediction

x̂t+1, x̂t+2, ..., x̂t+T Predicted load values for future time steps

C Forecaster function

θ Optimized parameter vector

where θ is the optimized parameter vector. This model needs to effectively cap-

ture the long-term dependencies in the sequence data through the use of Trans-

former’s self-attention mechanism and multi-head attention mechanism, allowing

for simultaneous focus on different positions within the sequence.

Based on the problem definition, the main challenges and key points in this paper

for achieving accurate electric load prediction at different granularities include:

• Historical Information Mining: The model needs to fully receive and

mine the historical information presented by the sequence data to capture

development trends and dependencies.

• Feature Relationship Extraction: The model must effectively extract

and utilize feature relationships within the data, such as periodicity and

other contextual features.

• Granularity Flexibility: The model should be capable of providing pre-

dictive results at different feature granularities, adapting to various levels

of detail in the data.

• Long-term Dependency Capture: Utilizing the Transformer’s self-

attention and multi-head attention mechanisms to dynamically adjust at-

tention weights and capture long-term dependencies in the sequence data.

• Sequence Understanding: Unlike traditional recurrent neural networks,

the model should process sequences of variable lengths and understand the

order within the sequences through positional encoding.

3.2. Model Architecture

The proposed model architecture is designed to effectively handle the complexities

of power load forecasting by leveraging the strengths of the Transformer framework.

The model consists of several key components: the Embedding Layer, Time Align-

ment Processing, a Pre-Trained Transformer, and the Time Series Data Generator.

Specifically, the embedding layer is responsible for converting the raw input

data into a dense vector representation that can be effectively processed by the
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Fig. 1. Model Architecture of the proposed Generative Pre-Trained Transformer for Power Load

Time Series (GPT4PLTS), this architecture effectively captures and processes the various aspects

of power load data, from initial embedding and alignment to prediction and generation of time
series data, resulting in a robust and accurate forecasting model.

model. It incorporates several components to capture different aspects of the input

data, including value embedding, temporal embedding, position embedding, and

user embedding. Then, the time alignment processing ensures that multiple time

series data are aligned to the same time scale for unified data processing. This step

involves converting all data timestamps to a consistent format and to estimate the

next time series data points start from current timestamps.

The core of the model is a pre-trained Transformer, specifically the decoder

of GPT, which is fine-tuned for the task of power load forecasting. Another ar-

chitecture option is BERT, however, which is not as good as GPT for time series

prediction due to its weakness of long tokens 40. The Transformer architecture, with

its self-attention mechanism and multi-head attention, is adept at capturing long-

term dependencies and complex relationships within the data. Finally, the Time

Series Data Generator transforms the model output back into time series data.

This component applies a linear transformation to map the processed model out-

put to the original time series format, ensuring that the predictions are accurately

scaled and adjusted.

3.3. Embedding Layer

The embedding layer is designed to incorporate several components to capture

different aspects of the input data. The overall embedding e is a combination of

four embeddings: value embedding, temporal embedding, position embedding, and

user embedding.

e = evalue + etemporal + eposition + euser (2)
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where evalue denotes the mbedding representing the observed values of the time

series data, etemporal denotes the embedding representing the temporal aspects such

as month, day, hour, and minute, eposition is the positional embedding to capture the

sequence order, and euser is the embedding representing user-specific information.

The temporal embedding etemporal is a sum of embeddings for different temporal

granularities:

etemporal = embedmonth + embedday + embedhour + embedminute (3)

where each embed∗ represents the embedding vector for the corresponding time

granularity. This allows the model to capture fine-grained temporal features.

The value embedding evalue is generated using a convolutional token layer to

encode the input data vector Xt:

evalue = Convtoken(Xt) (4)

where Convtoken is a convolutional layer applied to the input data vector to capture

local dependencies and patterns within the input window.

The positional embedding epos is derived using a learnable lookup table Epos

based on the position index i:

epos = Epos(i) (5)

where Epos maps the position index to a high-dimensional embedding space, allow-

ing the model to understand the order of the sequence.

3.4. Time Alignment Processing

To better accomplish the task of time series prediction and capture the temporal

information in large amounts of data, this paper proposes a time series alignment

phase to match LLMs with time series data. Time alignment processing aligns

multiple time series data to the same time scale to facilitate unified data processing

operations. First, all data timestamps are converted to the same time format, and

interpolation methods are used to estimate data points that do not fall on the

unified time scale, ultimately ensuring accurate alignment of data from different

sources on the same time dimension.

Given that we chose GPT as the backbone model, which is a causal language

model, we ensure that the same autoregressive training method used in its pre-

training phase is applied at this stage. Figure 2 illustrates the autoregressive goal

of the time series alignment phase: given a series of time series data as the input

sequence, the backbone model generates an output sequence that is shifted one step

to the right.

3.5. Pre-Trained Transformer

The Transformer model, pivotal for capturing the complex dependencies and rela-

tionships within time series data, is employed for fine-grained power load forecast-

ing. The Transformer architecture is leveraged due to its capability of dynamically
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Fig. 2. Time alignment phase for autoregressive training: given an input sequence of time series
data, the backbone model generates an output sequence shifted one step to the right.

adjusting attention weights based on the temporal sequence, thereby capturing

the temporal dependencies more effectively. This comprehensive approach ensures

that the model is well-equipped to handle the intricacies of electric load forecast-

ing, thereby improving prediction accuracy and enhancing the interpretability of

the model outcomes. This section details the core components of the Transformer

architecture: self-attention mechanism, decoder, and positional encoding.

3.5.1. Multi-Head Self-Attention

The self-attention mechanism is at the heart of the Transformer architecture. Tradi-

tional neural networks struggle with capturing long-term dependencies and varying

input sizes, particularly for sequential data such as power load data, which exhibit

significant temporal variations and periodic patterns. The self-attention mechanism

addresses these challenges by dynamically focusing on different parts of the input

sequence, enabling the model to capture dependencies irrespective of their distance

in the sequence.

Given an input sequence, the self-attention mechanism calculates three vectors

for each word: Query (Q), Key (K), and Value (V). These vectors are derived from

the input embeddings and are used to compute the attention scores. The formula

for self-attention is as follows:

Attention(Q,K, V ) = SoftMax

(
QKT

√
dk

)
V (6)

where Q is the query matrix, K is the key matrix, V is the value matrix, and dk is

the dimension of the key vectors.

To enhance model performance, the Transformer employs multi-head attention,

which allows the model to attend to information from different representation sub-
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spaces at different positions. The multi-head attention mechanism is defined as:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O (7)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (8)

where headi is the i-th attention head, WQ
i , WK

i , WV
i are projection matrices for

the i-th head, and WO is the output projection matrix.

Each head in multi-head attention can focus on different parts of the sequence,

capturing complex dependencies that are crucial for accurate power load forecast-

ing.

3.5.2. Transformer Decoder

The decoder layer is composed of six identical sub-decoders. Similar to the encoder,

each sub-layer consists of two main components: multi-head attention mechanism

and a feed-forward neural network. Additionally, residual connections are employed

around each sub-layer followed by layer normalization. The decoder transforms the

contextual embeddings from the encoder into target sequence predictions.

The decoder takes the context vectors generated by the encoder and processes

them to produce the output sequence. This is particularly important for power

load forecasting, where understanding the sequential nature and dependencies in

the data can lead to more accurate predictions.

3.5.3. Positional Encoding

To capture the sequential nature of the input data, which is critical for time series

like power load data, the Transformer uses positional encoding. Unlike traditional

RNNs or CNNs, which inherently consider the order of data, the Transformer relies

on positional encodings to provide this information.

The positional encoding is added to the input embeddings at the bottom of the

encoder and decoder stacks. The positional encoding vector is computed using sine

and cosine functions of different frequencies:

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
(9)

PE(pos, 2i+ 1) = cos
( pos

100002i/dmodel

)
(10)

where pos is the position, i is the dimension, and dmodel is the dimension of the

model. This encoding allows the model to learn the positional relationships within

the sequence data, essential for accurately forecasting power loads over time.
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3.5.4. Pre-Training Optimization Objectives

The pre-training optimization objectives are designed to ensure that the model

learns to capture the underlying patterns and dependencies in power load time

series data. During pre-training, the model is optimized to minimize specific loss

functions associated with different tasks. The main objectives include:

Next Token Prediction The model is trained to predict the next token in the

sequence based on the previous tokens. This objective helps the model learn tem-

poral dependencies within the data. The loss function for the next token prediction

is given by:

LNTP = −
T∑

t=1

logP (xt+1|x1:t; θ) (11)

where xt+1 is the true next token, x1:t are the previous tokens, P (xt+1|x1:t; θ) is the

predicted probability of the next token given the previous tokens, and θ represents

the model parameters.

Sequence Reconstruction The model is trained to reconstruct the original se-

quence from a corrupted version. This helps the model learn robust representations

that can handle noise and missing data. The loss function for sequence reconstruc-

tion is given by:

LSR = −
T∑

t=1

logP (xt|x̃1:T ; θ) (12)

where xt is the true token at time t, x̃1:T is the corrupted sequence, and P (xt|x̃1:T ; θ)

is the predicted probability of the token given the corrupted sequence.

Masked Token Prediction In this objective, certain tokens in the input sequence

are masked, and the model is trained to predict these masked tokens. This encour-

ages the model to capture contextual information from the surrounding tokens. The

loss function for masked token prediction is given by:

LMTP = −
∑
t∈M

logP (xt|x1:T\M; θ) (13)

where M is the set of masked token positions, x1:T\M are the unmasked tokens,

and P (xt|x1:T\M; θ) is the predicted probability of the masked token given the

unmasked tokens.

Total Loss The total loss function for pre-training is a weighted sum of the indi-

vidual loss functions:
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Ltotal = λNTPLNTP + λSRLSR + λMTPLMTP (14)

where λNTP, λSR, and λMTP are the weights assigned to each loss component.

These pre-training optimization objectives ensure that the model is well-

equipped to handle the complexities of power load time series data, capturing both

short-term fluctuations and long-term trends.

3.6. Time Series Data Generator

To ensure that the model’s output is effectively transformed back into time series

data, we incorporate a linear output layer. This layer takes the processed model

output and maps it back to the original time series format. The transformation

process can be described by the following formula:

ht = Woutot + bout (15)

where ht represents the generated time series data at time step t, Wout is the

weight matrix of the output layer, ot is the output from the model at time step

t, and bout is the bias term. This linear transformation ensures that the predicted

values are properly scaled and adjusted to match the expected time series format.

By applying this transformation, the model can produce time series data that align

with the original input format, enabling integration into the power load forecasting

workflow.

3.7. Fine-Tuning Free Time Series Generation

Based on the LLMTIME 15, we can leverage existing GPT models and appropriate

prompts to achieve event sequence generation without the need for fine-tuning. The

main steps are as follows:

• Define the Time Series Prediction Task: The task is formulated by

treating historical event sequence data as tokens. The goal is to predict the

next data point in the sequence, which corresponds to predicting the next

token in the GPT model. This involves structuring the time series data in

a way that GPT can process, transforming the sequence of events into a

format suitable for token prediction.

• Provide Few-Shot Examples: A small amount of data is used as exam-

ples to illustrate the proper input-output structure. These examples serve

as a guide for the GPT model, demonstrating how to map input sequences

of historical events to their corresponding next events. The few-shot learn-

ing approach allows the model to understand the task with minimal data,

leveraging the powerful pre-trained capabilities of GPT.
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• Batch Input for Generation: The defined input data for the time series

generation task is fed into the GPT model in batches. By doing so, we

can efficiently generate the required output sequences. Each batch of input

data contains sequences for which the next events need to be predicted, and

the model processes these sequences to generate the corresponding output

results.

This method enables rapid and efficient generation of time series data using

GPT models without the need for extensive fine-tuning, making it a practical and

scalable approach for various time series prediction tasks.

3.8. Scalability Analysis for Long-Term Forecasting

Given the increasing need for handling large-scale, long-term forecasting tasks, we

extend our discussion to address the scalability of the proposed approach. The

model’s time and space complexity, especially for large datasets and high-frequency

data, are analyzed as follows:

• Time Complexity: The proposed model processes input data in batches,

with the complexity of each batch prediction primarily determined by the

self-attention mechanism in the GPT model, which scales quadratically

with the input sequence length. For long-term forecasting, this can be a

limiting factor. To mitigate this, sparse attention mechanisms 51 can be

integrated to reduce computational overhead while preserving prediction

accuracy.

• Space Complexity: The memory requirements grow linearly with the

number of parameters in the model and the batch size. For large-scale

datasets, reducing the batch size or employing model compression tech-

niques such as quantization or pre-defined knowledge graphs 6 can alleviate

the memory footprint without significantly degrading performance.

• Adaptability for Real-Time Applications: For real-time forecasting,

latency is a critical factor. The use of lightweight model variants, along

with hardware acceleration via GPUs or TPUs, can ensure that predictions

are generated within acceptable time frames. Additionally, online learning

techniques can be incorporated to adapt the model to dynamic changes in

real-time data streams.

While the proposed approach provides a strong foundation for scalable fore-

casting, certain limitations persist. For instance, the quadratic scaling of attention

mechanisms restricts its application to extremely long sequences. Future work will

explore integrating hierarchical attention models 43 or hybrid frameworks that com-

bine traditional statistical methods with neural architectures to improve scalability

further.
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4. Experimental Settings

4.1. Dataset

4.1.1. Basic Power Load Dataset

In this study, the target dataset used comprises load monitoring data from vari-

ous domains and users between 2021 and 2023. The data is collected from 2000

electricity-using enterprises, with each enterprise being recorded 96 times per day

at 15-minute intervals, resulting in a total of 96 load measurements per day. The

format of the load monitoring data is shown in Table 2. Additionally, enterprise in-

formation data, such as industry type, electricity usage category, etc., is included,

with the format shown in Table 3.

Table 2. Part of Enterprise Load Monitoring Data

Enterprise ID Date D1 D2 ... D96

UID00001 2021/8/30 175.8 165.45 ... 169.8

UID00001 2021/8/31 164.8 154.21 ... 145.9

UID00001 2021/9/1 175.5 166.00 ... 167.3

UID00001 2021/9/2 184.8 175.67 ... 163.2

UID00001 2021/9/3 188.9 182.56 ... 168.5

4.1.2. Power Load Temporal Features

Electricity load typically exhibits certain periodic regularities and is influenced

by multiple factors. Seasonal variations, holidays, special events, industrial and

commercial activities, regional and lifestyle habits all impact load patterns. For

example, UID00002’s daily load data from August 30, 2021, is shown in Figure 3.

Fig. 3. Daily Load Profile of Enterprise

UID00002 on August 30, 2021

Fig. 4. Load Profile of Enterprise

UID00002 from August 30, 2021, to

February 20, 2023
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Table 3. Part of Enterprise Information Data

Enterprise

ID

Contract

Capacity

Measurement

Capacity

Label Industry Region Usage

Category

UID00001 1250 1250 Official Tertiary

Industry

Business Single

Power

Source

UID00002 1600 1600 Official Tertiary

Industry

Transport Dual

Power

Source

UID00003 3500 1000 Official Secondary

Industry

Equipment

Manufac-

turing

Dual

Power

Source

UID00004 800 800 Official Tertiary

Industry

Other

Services

Single

Power

Source

UID00005 8000 1260 Official Secondary

Industry

Integrated

Circuits

Dual

Power

Source

UID00006 1260 630 Official Tertiary

Industry

Business Dual

Power

Source

The load data of UID00002 from August 30, 2021, to February 20, 2023, re-

flecting the average daily load, is shown in Figure 4. Due to the impact of holidays

and weekends, the curve shows periodic fluctuations. The overall trend indicates

an increase starting in June and peaking in mid-August, then gradually decreasing.

This trend corresponds to the typical annual electricity consumption cycle affected

by heating and cooling demands.

Table 4. Weekly Load Data of Enterprise UID00002 (August 30, 2021 - September 5, 2021)

Enterprise ID Weekly Avg Load Weekly Peak Load Peak Load Date Min Load Date

UID00001 123.02 154.61 2021/9/1 2021/9/4

4.1.3. Industry Load Features

Different enterprises exhibit varying electricity usage types, capacities, and industry

characteristics, as shown in Table 3. Figure 5 and Figure 6 illustrate the average

daily load profiles of six enterprises from different industries and six enterprises

from the transport industry on August 30, 2021, respectively.
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Fig. 5. Average Daily Load Profiles of

Six Enterprises from Different Indus-
tries (August 30, 2021)

Fig. 6. Average Daily Load Profiles of

Six Enterprises from the Transport In-
dustry (August 30, 2021)

4.1.4. Holiday Information

Due to people’s lifestyles and economic activities, holidays usually significantly

impact electricity load. To improve model prediction accuracy, holiday auxiliary

information is added to the load data. Table 5 provides holiday information from

September 1, 2021, to September 11, 2021.

Table 5. An example of holiday information (September 1, 2021 - September 11, 2021)

Date Weekday Holiday (1: Yes, 0: No)

2021/9/27 Monday 0

2021/9/28 Tuesday 0

2021/9/29 Wednesday 0

2021/9/30 Thursday 0

2021/10/1 Friday 1

2021/10/2 Saturday 1

2021/10/3 Sunday 1

4.2. Data Pre-Process

4.2.1. Pre-Process and Normalization

After analyzing the dataset, we found that the observation dates for enterprises

in the load monitoring files from August 30, 2021, to February 20, 2023, are not

continuous, with missing dates and NaN values in the load observation data. To

address these issues, we used linear interpolation to fill in the missing dates and

replaced NaN values with the previous observation point’s data. This approach en-

sures data continuity and accuracy for subsequent analysis and modeling. We also

detected outliers in the dataset through statistical analysis. Typically, electricity

load is a positive value, as electricity consumption occurs during specific periods.



November 16, 2024 13:10 output

20 Yiwen Jiang, Sheng Xiang, Yihan Dai, Dawei Cheng

Therefore, negative load values or unrealistically high values were identified as out-

liers and removed. Additionally, we found duplicate records in the dataset. These

duplicates were merged by taking the average of the duplicate entries for the same

enterprise on the same day, ensuring each enterprise-day pair is represented by a

single entry.

Due to the diverse electricity demands and usage habits across different industry

domains and user types, we processed the electricity load monitoring data separately

for each user, normalizing it to a unified scale. This normalization minimizes the

impact of data magnitude differences between user groups, enabling more accurate

modeling.

The Min-Max normalization method, preserving the original data distribution

and structure, was applied to generate train and test data of neural networks. This

method maintains the relative relationships and distribution characteristics of the

data, as shown in Equation 16:

x′ =
x−min

max−min
(16)

where, x represents the original data, x′ is the normalized data,min is the minimum

value, and max is the maximum value of the data column.

4.2.2. Mini-Batch Data Training

Mini-Batch training involves dividing the entire training dataset into multiple

batches, using each batch to calculate gradients and update model parameters.

This method leverages hardware efficiently, accelerates computation, and enhances

model training stability by averaging the gradients over batches, reducing variance

and smoothing the training process. For this study, we pre-processed and featured

the dataset according to batch training requirements. The dataset was divided into

batches based on different electricity users, including historical load data and ad-

ditional user attributes. These attributes include time-related features (e.g., hour,

day of the week, holiday) and user basic information (e.g., industry domain). Such a

division ensures that each batch accurately reflects real-world electricity usage con-

ditions, providing robust support for model training and generalization. The batch

size impacts computation time and result accuracy. In Section 4.4, we discuss the

optimal batch size based on our experiments, providing guidance for future model

training and setup.

4.3. Compared Methods

In this study, we selected six models as baseline methods to compare with our

sequence generation model GPT4PLTS. The selected models are LSTM, TCN,

GRU, DLinear, Informer, and Crossformer. The following is a brief introduction to

these baseline models:
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(1) LSTM 17: Long Short Term Memory is a type of recurrent neural network

(RNN) used for processing and predicting time series data. It controls infor-

mation flow through three gates (input gate, forget gate, and output gate) and

a cell state, enabling the model to selectively remember or forget information,

thus better capturing important features in the sequence data.

(2) TCN 1: Temporal Convolutional Network is an extension of traditional con-

volutional neural networks (CNN) for sequence modeling. TCN uses one-

dimensional convolutions to capture local or global features of the sequence,

with dilated convolutions allowing it to learn long-range dependencies, thereby

improving the model’s generalization ability.

(3) GRU 7: Gated Recurrent Unit is a type of recurrent neural network (RNN)

similar to LSTM, but with fewer parameters and a simpler structure, leading

to faster training.

(4) DLinear 48: This model combines linear and deep neural networks (DNN),

leveraging the strengths of both to handle the complexity of sequence data.

The input data is first processed by a linear model, followed by a multi-layer

neural network to learn non-linear transformations, thus enhancing the model’s

understanding and interpretability.

(5) Informer 51: Informer introduces a self-attention mechanism with a sparsity

constraint, allowing it to handle sequences of varying lengths efficiently. It also

incorporates the impact of long-term dependencies by introducing a generative

process, thereby improving the model’s robustness and generalization ability in

long-term prediction tasks.

(6) Crossformer 43: Compared to traditional Transformer models, Crossformer

introduces cross-channel information to enhance feature extraction while re-

taining the self-attention mechanism of the Transformer, allowing the model

to learn long-range dependencies and relationships in the sequence data more

effectively.

The training process of these models was cross-validated, with the dataset di-

vided into training and test sets. Each method was trained using batch training as

described in the previous section, ensuring consistency and reliability of the results.

4.4. Parameter Settings

The experimental environment configuration for this study includes both hardware

and software setups. The hardware configuration consists of a HiSilicon Kunpeng-

920 CPU operating at 2.6 GHz, a 910B3 GPU, 32GB of memory, and 890GB of

storage. The software environment includes VSCode 1.89.1, Conda 4.10.3, Python

3.10.13, and various Python libraries such as PyTorch 2.2.1, and Transformers

4.38.1.

The model training process involved several parameters impacting training out-

comes. The optimized experimental configuration parameters are as follows: histor-

ical sequence length (seq len) is 256, prediction length (pred len) can be 1, 7, 15,
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32, or 96, input channels (c in) is 96, decoder input channels (dec in) is 96, output

channels (c out) is 96, model dimension (d model) is 512, learning rate is 0.0007,

batch size is 32, dropout rate is 0.3, and the number of training epochs is 15. The

frequency of data sequences (freq) can be selected from various options includ-

ing secondly, minutely, hourly, daily, business days, weekly, and monthly, with the

time step (stride) set to 1. The model uses 6 layers of GPT for training, with the

Adam optimizer employed to automatically optimize the learning parameters, ad-

justing the learning rate dynamically during the training process to enhance model

convergence and stability.

4.5. Evaluating Metrics

The performance evaluation metrics used in this study for regression error analysis

are MSE, MAE, and RMSE. The mathematical definitions of these three metrics

are as follows:

MSE (Mean Square Error) is the average of the squared differences between

predicted and actual values. The formula is given by Equation 17:

LossMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (17)

MAE (Mean Absolute Error) is the average of the absolute differences

between predicted and actual values. The formula is given by Equation 18:

LossMAE =
1

n

n∑
i=1

|yi − ŷi| (18)

RMSE (Root Mean Square Error) is the square root of the average of the

squared differences between predicted and actual values, which is the square root

of MSE. The formula is given by Equation 19:

LossRMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (19)

In the above formulas, yi represents the actual load data, ŷi represents the

predicted load data, and n denotes the sample size.

During the model training process, to monitor the regression metrics and prevent

model overfitting, we employed the Early Stopping mechanism. This technique stops

the training when the validation error begins to increase, preventing overfitting and

ensuring the model generalizes well to unseen data.
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5. Experimental Results

5.1. Main Results

The experimental results of the GPT4PLTS model compared to other baseline

models are shown in Table 6. The evaluation metrics include MSE, MAE, and

RMSE for prediction lengths of 1, 7, 15, 32, and 96 days.

Table 6. Performance Evaluation of GPT4PLTS and Baseline Models

Metric Length Ours LSTM TCN GRU DLinear Informer C.former

MSE

1 0.078 0.105 0.078 0.286 0.374 0.065 0.081

7 0.054 0.118 0.085 0.305 0.465 0.075 0.085

15 0.053 0.148 0.102 0.436 0.548 0.085 0.093

32 0.092 0.226 0.142 0.602 0.612 0.098 0.129

96 0.124 0.279 0.245 0.648 0.701 0.119 0.155

MAE

1 0.222 0.255 0.225 0.310 0.432 0.210 0.230

7 0.191 0.255 0.233 0.310 0.465 0.210 0.225

15 0.179 0.273 0.225 0.320 0.510 0.223 0.237

32 0.243 0.320 0.276 0.420 0.545 0.239 0.287

96 0.256 0.335 0.305 0.435 0.610 0.274 0.325

RMSE

1 0.280 0.324 0.279 0.534 0.611 0.255 0.293

7 0.230 0.342 0.295 0.553 0.682 0.269 0.305

15 0.231 0.384 0.313 0.660 0.741 0.273 0.316

32 0.343 0.444 0.400 0.738 0.812 0.320 0.349

96 0.353 0.456 0.435 0.830 0.920 0.354 0.407

From the comparative experiments, it can be observed that our GPT4PLTS

model performs well in the short-term prediction of the target dataset, with the

prediction performance gradually declining as the prediction horizon increases to

one month. Compared to traditional prediction methods such as LSTM, GRU, and

TCN, our model consistently exhibits superior performance. The Informer model

shows stable prediction results, especially in ultra-short-term and short-term predic-

tions. However, for weekly-level granularity, our GPT4PLTS model achieves lower

prediction errors. The main results show that our proposed method achieves 9 best

results among 15 settings.

5.2. Parameter Sensitivity

During the model training process, the settings of various parameters significantly

impact the training results. However, the effects of different parameters on the

model vary within a certain range. In Section 4, we presented the parameter settings

used to construct the model in this study. These settings were derived from the

parameter sensitivity analysis experiments, which provided optimized or optimal
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parameter values, enhancing the model’s prediction accuracy.

This section introduces some crucial parameters and their specific results from

the experiments, exploring the effects of parameter settings on the model’s accuracy

to further improve prediction precision.

The root mean square error (RMSE) is used as the primary evaluation metric

in this study. RMSE is particularly suitable for this research because it emphasizes

larger prediction errors, which are often more critical in assessing model perfor-

mance for electricity load prediction. By penalizing larger deviations more heavily,

RMSE provides a clear indication of the model’s prediction accuracy, helping to

identify configurations that minimize these errors effectively. Moreover, RMSE is

widely recognized in similar predictive modeling tasks, ensuring the results of this

study are comparable to existing research.

The impact of batch size on model accuracy (RMSE) is shown in Figure 7 (a).

The RMSE of the electricity load prediction model fluctuates with changes in batch

size. When the batch size is 8 and 16, the RMSE is relatively stable, especially at

batch size 16, where the RMSE reaches its lowest value. This indicates that for these

two batch sizes, the model’s prediction error is relatively small, and the prediction

accuracy is optimal. As the batch size increases to 32, 64, and 96, the RMSE rises

slightly, but the increase is not significant, maintaining a relatively stable level.

Therefore, a batch size of 32 is selected as the optimal value, achieving the best

model performance at this value.

Fig. 7. Parameter Sensitivity Analysis. (a) Impact of Batch Size on RMSE, (b) Relationship

between Learning Rate and RMSE, (c) Relationship between Training Epochs and Loss, (d)

Impact of Dropout Rate on RMSE
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Finding an appropriate learning rate can accelerate model convergence, reducing

training time, and avoiding the instability caused by excessively high or low learning

rates, thereby enhancing the model’s overall performance and accuracy. This study

experimented with different learning rates, monitoring the RMSE changes to find

the optimal learning rate value, as shown in Figure 7 (b). The optimal learning rate

was found to be 0.0007.

The number of training epochs affects the model’s ability to learn the informa-

tion in the data. Too few epochs may result in underfitting, while too many can

cause overfitting, reducing the model’s generalization ability. This section explores

the appropriate number of training epochs, ensuring the training results are opti-

mal. Figure 7 (c) shows the relationship between the number of training epochs and

model loss on the training and validation sets. The training loss and validation loss

both decrease rapidly during the first few epochs and tend to stabilize around the

10th epoch. The validation loss fluctuates slightly, maintaining a relatively stable

level. Therefore, the optimal number of training epochs is set to 15, ensuring model

stability and performance.

Dropout is a regularization technique that randomly disables parts of the neu-

rons during training to prevent overfitting, enhancing the model’s ability to gen-

eralize to unseen data. However, excessive dropout can lead to underfitting, while

insufficient dropout may not effectively prevent overfitting. Common dropout rates

range between 0.1 and 0.5. This study explores the optimal dropout rate within

this range, as shown in Figure 7 (d). When the dropout rate is 0.1, the RMSE is

relatively high. As the dropout rate increases to 0.3, the RMSE reaches its lowest

value, indicating the model’s optimal performance at this dropout rate. With fur-

ther increases to 0.4 and 0.5, the RMSE rises slightly but remains within a relatively

stable range. Therefore, the optimal dropout rate is set to 0.3.

5.3. Ablation Study

This section presents an ablation study to verify the rationality and effectiveness of

different model components and configurations. We examined the following model

variants:

• GPT(0): GPT model with 0 decoder layers.

• GPT(1): GPT model with 1 decoder layer.

• GPT(6): GPT model with 6 decoder layers.

• GPT(12): GPT model with 12 decoder layers.

• Without Embedding: Model without any embedding layer.

• Without Temporal Embedding: Model with embedding layer but without

temporal embedding.

• Without Position Embedding: Model with embedding layer but without

position embedding.

• With Temporal Processing: Model with temporal processing layer.

• Without Temporal Processing: Model without temporal processing layer.
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The RMSE performance of these model variants on the same test dataset is

presented in Table 7.

Table 7. RMSE Performance of Different Model Variants

Model Variant RMSE

GPT(0) 0.430

GPT(1) 0.350

GPT(6) 0.308

GPT(12) 0.308

Without Embedding 2.355

Without Temporal Embedding 1.266

Without Position Embedding 0.934

With Temporal Processing 0.232

Without Temporal Processing 0.628

The core part of the GPT model is composed of 12 stacked decoder layers.

When tuning the prediction model, we explored the impact of different numbers of

decoder layers on the training results. As shown in Table 7, compared to the full 12

layers or fewer layers, the 6-layer decoder structure of GPT is a reasonable choice

with the best training results.

To verify the effectiveness of the embedding layer design, we trained and evalu-

ated models with and without the embedding layer, comparing their RMSE perfor-

mance on the same test dataset. Additionally, due to the embedding layer involving

multiple feature combinations, we also evaluated models with or without temporal

embedding and position embedding to verify the effectiveness and rationality of

these embedding methods. The results are shown in Table 7.

Keeping other training parameters unchanged, we compared the training results

with and without the temporal processing layer. As shown in Table 7, the RMSE

increased significantly after removing the temporal processing layer, indicating a

significant decline in model accuracy.

5.4. Case Study

During the prediction process of the GPT4PLTS model, we plotted the actual and

predicted values of the monitoring data at 96 points for a certain enterprise, with

each point representing a 15-minute interval, as shown in Figure 8. It can be seen

that although it is difficult for the model to capture peak values, possibly due to the

stochastic electricity load volatility in a short period, the generative model performs

well overall on a daily basis. Therefore, the model can capture the general trend in

short-term power load forecasting.

Additionally, to compare the prediction curves over different time spans, we

also plotted the average daily load prediction curves for a certain enterprise over a
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Fig. 8. Actual and Predicted Values of

Monitoring Data at 96 Points for a Cer-
tain Enterprise

Fig. 9. Average Daily Load Prediction

Curves for a Certain Enterprise over a
Month (30 days)

month (30 days), as shown in Figure 9. Overall, the model’s performance at a 30-day

prediction length is better for predictions within a day at 15-minute intervals.

From the case study, we observe that the GPT4PLTS model can effectively cap-

ture the general trend of electricity load over short periods. Besides, The model can

perform better when predicting average daily loads over a 30-day period, indicating

its strength in short-term and medium-term forecasting.

6. Conclusions and Future Works

Constructing a generative power load simulation model can provide various related

time data for the power system, facilitating multiple enterprise electricity demand

forecasts. In this paper, we proposed a generative model for simulating and fore-

casting power load using the GPT architecture within the transformer framework.

Our approach involved input embeddings, constructing and tuning the generative

model, and power load time series generator. Experiments were conducted on mul-

tiple baselines and 3 popular evaluating metrics. The results demonstrated that our

model outperformed other methods in short to medium-term predictions, especially

under large-scale datasets. Future work will focus on incorporating fine-grained fea-

tures and auxiliary information, such as economic activities and regional events, to

improve model accuracy for ultra-short-term and long-term forecasts. Additionally,

enhancing the model’s scalability and adaptability for different dataset sizes and

further optimizing the model’s efficiency and speed are key areas for improvement.

These efforts aim to refine the model’s performance and ensure consistent accuracy

across various forecasting scenarios.
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M. Biloš, H. Ghonia, N. V. Hassen, A. Schneider et al., Lag-llama: Towards foundation
models for time series forecasting, arXiv preprint arXiv:2310.08278 (2023).
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