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Abstract—Graph generation is beneficial to comprehend the
creation of meaningful structures of networks in a broad spec-
trum of applications such as social networks and biological net-
works. Recent studies tend to leverage deep learning techniques to
learn the topology structures in graphs. However, we notice that
the community structure, which is one of the most unique and
prominent features of the graph, cannot be well captured by the
existing graph generators. Moreover, the existing advanced deep
learning-based graph generators are not efficient and scalable,
which can only handle small graphs. In this paper, we propose
a novel community-preserving generative adversarial network
(CPGAN) for effective and efficient (scalable) graph simulation.
We employ graph convolution networks in the encoder and share
parameters in the generation process to transmit information
about community structures and preserve the permutation-
invariance in CPGAN. We conducted extensive experiments on
benchmark datasets, including six sets of real-life graphs. The
results demonstrate that CPGAN can achieve a good trade-
off between efficiency (scalability) and graph simulation quality
for real-life graph simulation compared with state-of-the-art
baselines.

I. INTRODUCTION

Graphs have been used to model relationships in a wide
spectrum of applications such as social science, biology,
and information technology [1], [2]. In some scenarios, the
real-life graphs are not available due to a variety of rea-
sons such as incomplete observability, privacy concern, and
company/government policy. Thus, many graph techniques
have been developed to simulate real-life graphs in various
tasks such as modeling physical and social interactions and
constructing knowledge graphs. For example, in financial
fraud detection, generated graphs can be adopted to produce
synthetic financial networks without divulging private infor-
mation [3]. Moreover, graph generation techniques can also
help us to better understand the distribution of graph struc-
tures and other features for the essential tasks. For instance,
graph generators can be used to generate molecule [4] and
formulas [5], which help to understand insights of the graph
data.
Motivation. Due to its importance in both academia and
industry, there is a long history of study on graph generators
in many domains such as database, data mining, and machine
learning (Please refer to [6] for a recent survey). Among these
studies, the arguably most important line is the general graph
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generator which aims to learn a generative model to capture
the structural distributions of the observed graphs regardless of
the domains. Unless otherwise specified, the graph generators
referred to in this paper are general graph generators. A
large body of techniques have been developed in the literature
which can be roughly divided into two categories: traditional
graph generative models (e.g., [7]–[12]) and learning-based
graph generative models (e.g., [13]–[15]). Generally speaking,
the traditional approaches can efficiently generate large scale
graphs based on some rules (e.g., [7]–[9]). However, the
simulation quality of these models is not satisfactory for real-
life graphs because they are hand-engineered to model some
particular families of graphs and lack the capacity to learn
a generative model directly from observed real-life graphs.
With the advance of deep learning techniques, there is a
clear trend in the literature where a variety of deep learning
techniques such as recurrent neural network (RNN [13], [16])
and generative adversarial network (GAN [14], [17]) have
been adopted to simulate real-life graphs. Though they have
significantly improved the graph simulation quality by taking
advantage of the sophisticated models, there are two major
limitations.

(1) Community-preserving. Due to the complex nature of the
graph, we cannot directly evaluate the goodness of the graph
simulation by calculating similarity score between two graph
distributions 1. Thus, we have to resort to a variety of metrics
each of which aims to quantitatively capture the likelihood of
two graphs (graph distributions) from one perspective (e.g.,
degree distribution). We notice that the community structure,
which is one of the most unique and prominent features
of the graph, is neglected by most of the graph generators.
Stochastic block models (SBM [20]), as well as its variants
DCSBM [21], MMSB [10] and SBMGNN [15], BTER [22]
and Chung-Lu model [23] consider the community structure.
But there are only a few parameters in their models, which
cannot properly capture the community structure of real-life
graphs due to the simplicity of their generative models. It
is well-known that the community structure preserves the
inherent high-order structural property of the graph and hence

1Note that there are some similarity measures for two graphs such as graph
edit distance [18] and maximum common subgraph [19]. But they cannot be
applied to determine if two graphs are from the same distribution.



plays an important role in many downstream data analysis
tasks such as link prediction and node classification. For
instance, communities in a real-life network might represent
real social groupings [24] and communities in a guarantee-loan
network [25], [26] might represent dense loan relationships
and financial institution groups (See Figure 1 as an example).
This community information could help us to understand and
exploit these networks more effectively [27]. Thus, in addition
to the existing graph simulation quality evaluation metrics, we
should also consider if a graph generator can well preserve the
community structure of the observed real-life graph.

(2) Efficiency. Due to the complexity of the deep learning
models, it is not a surprise that the emerging advanced
deep learning-based general graph generative models are very
time-consuming compared to the traditional models, and they
can only handle small or medium-sized graphs in practice.
For instance, GraphRNN [13] and GRAN [28] take RNN
to generate the whole adjacency matrix, and NetGAN [14]
uses random walks to assemble the whole graph, whose time
complexity of training and inference procedures is O(b×n2),
where n is the number of graph nodes and b is the number of
epochs. Considering that the efficiency and simulation quality
are two important but contradictory requirements of graph
generators in practice, it is desirable to develop a new deep
learning model which can achieve a good trade-off between
the efficiency (scalability) and the simulation quality.

Contribution. One may wonder if we can simply modify
the existing deep learning-based generative graph generator
models to preserve the community structure of the observed
graphs. As to our best knowledge, this is non-trivial because it
is challenging to integrate the community-preserving property
in the learning and optimization of the graph generative models
without sacrificing simulation quality. Thus, in this paper, we
aim to design a new graph generative model which can better
preserve the community structures of the observed graphs and
have competitive performance on other evaluation metrics.

Recent advances in generative adversarial networks (GAN)
have shown great successes in the graph simulation task
(e.g., [14], [17], [29]). In this paper, we follow this line of
research and propose a novel Community-Preserving Genera-
tive Adversarial Neural network (CPGAN) for the efficient
and community-preserving graph generation. In particular,
we propose a ladder network of the graph convolution and
pooling layers as the permutation-invariant graph encoder.
Before translating latent variables to a new graph, we leverage
variational inference on the latent conjugate distributions to
generate graphs naturally. The decoder (generator) is a full-
connected network with a dot product to make link predictions
once at all. Finally, the graph convolution and pooling layers
are leveraged in an encoder (discriminator) to judge whether
the community structure is well learned from the observed
graphs.

In a nutshell, our principal contributions in this paper are
summarized as follows:

• We propose a new graph generation model, Community-
Preserving Generative Adversarial Network (CPGAN).
It can not only preserve the community structure as

Fig. 1. An illustration of the communities of a real-life network.

well as other important properties of the real-life graphs
but also reduce the graph simulation time and improve
the scalability compared to other learning-based graph
generation models.

• We carefully design the generator and discriminator in a
unified GAN framework, in which the generator is in a hi-
erarchical graph variational autoencoder that could learn
permutation-invariant representations of input graphs and
could generate new graphs from node representations
(embeddings), and the discriminator to judge whether the
embeddings are from real or simulated graphs.

• We introduce a differentiable ladder-shaped network to
enable graph pooling and message transmitting in differ-
ent community structure levels, which is more efficient
and effective than simply stacking deeper graph convolu-
tion layers.

• We conduct extensive experiments on both synthetic and
real-world graphs. Results show that our proposed model
can achieve a good trade-off between graph simulation
quality and efficiency (scalability) compared to the base-
line methods.

II. BACKGROUND

In this section, we first formally define the problem of graph
generation in Section II-A, and then present the closely related
works in Section II-B.

A. Problem Definition

We define a graph G = (V,E) where V denotes a set of n
nodes (vertices), and a set of m edges E ⊆ V × V , where a
tuple e = (u, v) ∈ E represents an edge between two vertices
u and v in V . The graph G can also be represented by an
adjacency matrix A ∈ {1, 0}n×n. Same as the literature, we
assume G is an undirected graph, and hence the adjacency
matrix of the graph is symmetric. Additionally, we denote
the (optional) node-feature matrix associated with the graph
as X ∈ Rn×d where n denotes the number of nodes and d



TABLE I
THE SUMMARY OF NOTATIONS

Notation Definition
G the graph
A adjacency matrix
X node features

Zrec the node features reconstructed from
input graph

N (µ, diag(σ2)) the normal distributions
n total number of vertices
m total number of edges

E,D the encoder and decoder
G,D the generator and discriminator
z(k) the node features of the k-th level’s

community structure

denotes the dimension of the node feature. We summarize the
notations in Table I.

Problem Statement. Given an observed graph G, a graph
generative model aims to capture the structural distribution of
the graph, such that a set of new graphs {G′} with similar
structural distribution can be generated.

Ideally, a general graph generative model should be able to
generate new graphs which have exactly the same distribution
as the observed graph. However, it is notoriously difficult to
tell if two graphs are from the same distribution due to the
complex nature of graph structure [13]. In practice, we have to
resort to representative evaluating metrics in our experiments,
each of which aims to quantitatively capture the likelihood of
two graphs from one perspective (e.g., degree distribution).
Please refer to section IV-A for more details. Below we
introduce the evaluation metrics for the community-preserving
which will be carefully considered by your graph generation
model.

Evaluation of community-preserving. In this paper we aim
to preserve the community structures of the training graphs.
That is, we regard the community structures of the training
graphs as the ground truth, and hopefully, the generated
graph has the same community structure, where the goodness
of the community-preserving is evaluated by two popular
metrics: Adjusted Rand Index (namely ARI) and Normalized
Mutual Information (namely NMI). Below are their detailed
definitions.

Given a graph with n nodes and original community parti-
tion Yc = {y1, ..., yc}, a community-preserving graph gener-
ative model generate a new graph with another community
partition Xr = {x1, ..., xr}. Assume there is a bijective
mapping between nodes of two graphs, we can formulate
the similarity of two community partitions using Rand Index
(namely RI) as follows:

RI =
TP + TN

TP + FP + FN + TN
(1)

where TP is the number of true positives, i.e., the number
of pairs of nodes that are in the same subsets in both Xr and
Yc, TN is the number of true negatives, i.e., the number of
pairs of nodes that are in different subsets in Xr as well as Yc.
With the same rationale, FP and FN represent the number of
false positives and the number of false negatives, respectively.

The Rand Index, however, suffers from one problem. For
random data, it will be higher for low community counts

𝑦1 𝑦2 ⋅⋅⋅ 𝑦𝑐 Sum

𝑥1 𝑛11 𝑛12 ⋅⋅⋅ 𝑛1𝑐 𝑎1

𝑥2 𝑛21 𝑛22 ⋅⋅⋅ 𝑛2𝑐 𝑎2

𝑥𝑟 𝑛𝑟1 𝑛𝑟2 ⋅⋅⋅ 𝑛𝑟𝑐 𝑎𝑟

Sum 𝑏1 𝑏2 ⋅⋅⋅ 𝑏𝑐

Fig. 2. The contingency table of two community partitions Xr and Yc.
than for high ones, because two nodes are more likely to be
assigned together by chance. The ARI is a version of the RI
corrected for the chance. According to Figure 2, a contingency
table denotes the common nodes of two community partitions,
with nij denoting the number of common nodes in the
community xi and yj , ai =

∑c
j=1 nij and bj =

∑r
i=1 nij .

The ARI can be formulated in terms of the contingency table
as follows:
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By calculating the ARI, we can quantitatively evaluate the
similarity between the community structure of the generated
graph and the observed graph. We can also use Mutual Infor-
mation (MI) as evaluating metrics for community-preserving.
MI is formulated as follows:

MI =
r∑

i=1

c∑
j=1

nij

N
log

Nnij

aibj
(3)

where N denotes the number of nodes. In practice, we use
NMI, i.e., the normalized version of MI as our evaluating
metric.

B. Related Work

In this subsection, we summarize the related works in
two main areas: traditional graph generation methods (Sec-
tion II-B1) and deep graph generative models (Section II-B2).
As our model follows the line of the GAN-based graph gen-
erative model, some details of the algorithms in this category
are also presented in Section II-B3.

1) Traditional Graph Generation Methods: The research
on graph generative models has a long history [7], [8], [12].
Traditional approaches, such as B-A model [8], Chung-Lu
model [23], Kronecker graphs [12], BTER [22], the expo-
nential random graphs [30] and stochastic block models [10]
etc., are carefully hand-engineered to model a particular family
of graphs. For example, the exponential random graphs model
(ERGMs) [30] relies on an expressive probabilistic model that
learns weights over node features to model edge likelihoods,
but in practice, this approach is limited by the fact that it
only captures a set of graph-sufficient statistics. The Kronecker
graph model [12] relies on Kronecker matrix products to
efficiently generate large adjacency matrices. While scalable
and able to learn some graph properties (e.g. degree distri-
butions) from data, this approach remains highly constrained
in terms of the graph structures that it can represent. The



BTER [22] model was proposed to correct the average clus-
tering coefficient in each community, and correct the degree
distribution through a two-level edge sampling process. BTER
considers the community structure by explicitly modeling a
graph as a two-level E-R graph. Note that SBM [20] and
its variants DCSBM [21] and MMSB [10] also consider the
community structure, but they are limited by the simplicity
of the stochastic model, resulting in the poor performance in
terms of community structure-preserving for real-life graphs.
Specifically, only one parameter is used to capture each com-
munity (i.e., edges within this community), and one parameter
is used to represent the connectivity probability for each pair
of communities (i.e., edges between these two communities).
A simple example about using SBM to generate new graphs
with three communities is:

B =

p1 0 0
0 p2 0
0 0 p3

 (4)

with this block matrix B, all edges will be generated within
the communities and there is no edge across the communities.
And the i-th community is equivalent to an E-R graph with
edge probability pi.

2) Deep Graph Generative Methods: In recent years, some
techniques based on deep neural networks (e.g., VGAE [31],
DeepGMG [32], GraphRNN [13], Graphite [33], GRAN
[28], CondGen [17]) are proposed to tackle the problem of
graph generation. They significantly improve the quality of
graph generation compared to the traditional approaches. For
instance, Graphite and VGAE use variational autoencoders
(VAE) technique [31], [33] in which graph neural networks are
applied for inference (encoding) and generation (decoding).
As Graphite and VGAE assume a fixed set of vertices, they
can only learn from a single graph. NetGAN performs more
efficiently than VGAE by learning the graph’s random walks,
but it is not scalable because of the generation of the fixed
size of graphs. In DeepGMG, graph neural networks are used
to express probabilistic dependencies among nodes and edges
of the graph, which can properly learn distributions over any
arbitrary graph. However, it takes O(mn2D(G)) operations to
generate a graph with m edges, n vertices, and graph diameter
D(G), which also suffers from the scalability issue.

GraphRNN [13] generates a graph sequentially through
recurrent neural networks (RNNs). But it is not permutation-
invariant since computing the likelihood requires marginaliz-
ing out the possible permutations of the node orderings for
the adjacency matrix. GRAN [28] improves the scalability
of GraphRNN by generating one block of nodes and asso-
ciated edges at each step in auto-regressive methods, which is
still not permutation-invariant. CondGen [17] overcomes this
permutation-invariance challenge by leveraging a GCN as the
encoder and handling the graph generation problem in em-
bedding spaces. Graph U-Nets [34] chooses specific nodes to
realize upsampling and downsampling graphs to obtain graph
representations. However, they do not consider the community
structures of the observed graphs in the learning procedure.
SBMGNN [15] is a variant of SBM equipped with deep
learning techniques, but its graph neural networks are used to
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Fig. 3. A brief summary of NetGAN’s architecture. NetGAN generates new
graphs via three steps: (1) sampling random walks; (2) model training based
on GAN framework; and (3) assembling the adjacency matrix.

infer the parameters of the overlapping stochastic blockmodel,
which is not directly relevant to the community-preserving
property. Thus, there is no performance improvement in terms
of community-preserving compared to other deep learning-
based graph generative models.

3) GAN-based Graph Generator: Generative adversarial
networks (GANs) [35] have shown remarkable results in
various tasks such as image generation [36], image translation
[37], super-resolution imaging [38], and multimedia synthesis
[39]. GANs have also been utilized in network science tasks
recently, such as network embedding [40], semi-supervised
learning [41], and graph generation [13], [17]. For the graph
generation task, prior structure knowledge specified by the
sample dataset is crucial for graph generation, especially when
preserving community structure. For the graph’s community
structure, some models using pooling strategy [34], [42] can
be trained to represent communities (clusters) each time, but it
is still challenging to represent and generate these community
structures together. For instance, NetGAN generates graphs
via random walks, which is nontrivial to preserve community
structure. As to the time complexity of graph generation, gen-
erating a graph from NetGAN requires three steps according
to Figure 3. The first and second steps require O(kw) time
complexity, where k denotes the number of walks, and w
denotes the length of each walk. The third step requires O(n2)
time. In practice, to well simulate the real-life graphs, steps
1 and 2 may require far more time than O(n2) due to the
irreversible bias of random walks [43].

III. OUR APPROACH

The key idea of CPGAN is that we can extract and
reconstruct the community structure of a set of graphs by
providing a community-preserving model regardless of the
input permutation of each node. In this section, we outline
the main challenges, show the framework and implementation
details of our models, and introduce how to design the training
process to reconstruct and generate new graphs.

A. Challenges

In this work, we hope to (1) learn the community structure
of graphs using adjacency matrices A in the training set
and reconstruct new graphs with a similar structure, and (2)
generate new graphs using trained decoder D and samples
from prior distributions N . Below, we show four intrinsic
challenges in community structure preserved graph generation,
together with our unique contributions and the motivations of
our solutions.
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Fig. 4. The Framework of CPGAN

1) Community Structure Preserved Graph Generation: We
notice that the community structure, which is one of the
most unique and prominent features of the graph, is neglected
by most of the graph generators. Inspired by hierarchical
clustering, nodes with similar features can be clustered to the
same class in a bottom-up fashion. On the other hand, in the
representation learning of nodes, the clustering results can be
used as important representation information about the com-
munity structure of nodes. Therefore, in practice, we introduce
a hierarchical encoder to extract different levels of community
structure as the input of the discriminator for the encoder of
CPGAN, we need to use clustering results to enhance the
graph discrimination level. For the decoding process of the
generator, each node needs to exploit its community structure
to enhance the generative performance. An intuitive solution
is merging the node representations from different levels of
community structure as the input of the decoder.

2) Permutation-Invariance: In our task, every graph with
n nodes has n! different permutations, which will result in
an enormous number of adjacency matrices representing the
same graph. Given a permutation matrix ∀P ∈ {0, 1}n×n, we
need the encoder and decoder to meet the requirements of the
following equations to maintain permutation-invariance:

Encoder: E(PAPT ) = E(A);

Decoder: D(G(PZ)) = D(G(Z)).
(5)

where Z denotes the samples from prior distributions. The
adjacency matrices of different permutations may result in
different graph representations if the model does not have
permutation-invariance. Moreover, all permutation matrices
need to be trained to learn the underlying representation of
graphs. To address this issue, we implement our learning-
based model through an all permutation-invariant architecture.
Specifically, we ensure that all layers and objective functions
are permutation-invariant to achieve this goal.

3) Scalability and Efficiency: The learning-based graph
generative model can obtain better graph simulation quality.
But there are some problems such as low efficiency and
poor scalability, resulting in the incapability to generate real-
life graphs. Therefore, it is desirable to develop a new deep

learning model which can achieve a good trade-off between
the efficiency (scalability) and the simulation quality. In prac-
tice, our can sample nodes without replacement to assemble
subgraphs during training process to achieve a good trade-off
between efficiency (scalability) and quality.

4) Differentiable Community Information Transmission:
When extracting the community structure of a graph, Diff-
pool [42] can coarsen graphs layer by layer, similar to hier-
archical clustering. And the model architecture of Diffpool
for graph classification is consistent with that of our dis-
criminator. Therefore, our model encodes graph representation
through hierarchical clustering in a set of graphs and transmits
this information to the decoder to generate graphs with a
similar community structure. Moreover, our pooling layer is
differentiable to achieve the objective function to preserve the
community structure of observed graphs.

B. Model Architecture

Figure 4 illustrates the architecture of CPGAN. It includes
the encoder (E), the generator (G)/decoder (D), and the
discriminator (D). The upper right part is the discriminator,
which gives its judgments on whether the graph is from
real datasets. The lower right part is the generator, which
decodes the community structures of a graph and reconstructs
a new graph. For graph generation tasks, samples from prior
distributions will be directly decoded to generate new graphs.
And for graph reconstruction tasks, encoders in discriminator
and generator share their parameters. Graphs reconstructed
and generated will be fed into this model again to “fool” the
discriminator. Lorigin, Lrec, and Lgenerate represent the loss
of original graph, reconstructed graph, and generated graph,
respectively.

As illustrated in Figure 4, for a graph G, given its adjacency
matrix A and feature matrix X , the structural information of
the graph can be obtained by a ladder encoder. Regarding the
community information, we assume that the observed graphs
have ground truth community label Yc, which can be otherwise
obtained by applying existing community detection algorithms
(e.g., [44]). The output of assignment matrix ( will be intro-
duced in Section III-C2) can be seen as the predicted node



community assignments Xr. And the assignment matrix will
be constrained by these ground truth labels. The community
information and graph representation will be fed into the
discriminator to determine whether the input graph is fake.
At the same time, the coarsened graphs of each level will
distribute their community structure features to original nodes
through a differentiable hierarchical message transmission
process. Then the series of community information of each
node is decoded to enhance the reconstruction of the graph
structure. The node representations sampled from the prior
distribution can also be used to generate new graphs.

C. Ladder Message Transmission Encoder

Here we introduce a ladder-shaped encoder for this task
so that our model can adaptively adjust the pooling strategy
and extract the community structure information of nodes. We
leverage node features X and adjacency matrix A ∈ {0, 1}n×n

as the input of our proposed encoder. For each graph G, we
use identity matrix as its default node features X . Given node
features X ∈ Rn×d with d-dimension feature per node and
adjacency matrix A, input graph G will be coarsened using
stacked convolution and pooling layers.

1) Graph Convolution: As mentioned in Section II-B2, the
classical message transmitting model is expressed by graph
convolution networks (GCN) [17]. Post-transmitted message
Z ∈ Rn×d′

can be calculated as follows:

Z = σ(GCN(X,A)) = σ(D̃− 1
2 ÃD̃− 1

2XW ) (6)

where D̃ ∈ Rn×n denotes the degree matrix of Ã with D̃ii =∑n
j=0 Ãij , Ã denotes adjacency matrix containing self-loop

with Ã = A + In, W ∈ Rd×d′
is trainable parameters in

graph convolution layer with its kernel size d′ and σ denotes
activation function (default is the Rectified Linear Unit), and
X denotes the node features derived from spectral embeddings
of the adjacency matrix A with X = X(A). Information can
flow among nodes faster if we use some variants of Ã (e.g.
Ã = A + A2) to improve the connectivity of graphs. The
time complexity of graph convolution is O(m+ n), where m
denotes the number of edges.

2) Graph Pooling: According to our experience, simply
transmitting the message through GCNs can cause a very
deep network to capture structure information, especially when
we encounter large and sparse graphs with low connectivity.
We need an effective way to obtain the hierarchical rep-
resentations of a graph. Inspired by Diffpool [42], we can
coarse a graph hierarchically and learn a strategy to coarse
a set of graphs through a series of assignment matrices
S = {S(l) ∈ Rnl×nl+1 , 1 ≤ l < k}, where nl, nl+1, and k
denote the numbers of input nodes, output nodes, and layers
respectively. The assignment matrix is calculated as follows:

Z(l) = σ(GCNl,embed(X
(l), A(l)))

S(l) = softmax(GCNl,pool(Z
(l), A(l)))

(7)

where σ is Rectified Linear Unit activation function, X(l) ∈
Rnl×dl−1 and A(l) ∈ Rnl×nl denote the feature matrix and ad-
jacency matrix of nl cluster nodes, respectively, Z(l) ∈ Rnl×dl

denotes feature matrix with structure information of layer l,

and two GCNs are leveraged to collect structure information
and to infer the pooling strategy of layer l, respectively. Due
to the multiple operations of graph convolution and pooling of
one graph, we leverage a trick to use PairNorm [45] after each
GCN to allow us to stack deep GCNs without over-smoothing.
The assignment matrix can be seen as the predicted node
community assignments. And the assignment matrix will be
constrained by the ground truth labels (will be introduced in
Section III-F2). Given assignment matrix S(l), the coarsened
adjacency matrix A(l+1) and new embeddings X(l+1) can be
generated as follows:

A(l+1) = S(l)TA(l)S(l)

X(l+1) = S(l)TZ(l)
(8)

Stacking graph convolution and pooling layers can obtain a
series of node representations at different levels. In particular,
if the layer k has just one node after pooling, the corresponding
assignment matrix will be {1}nk−1 , such that the graph pool-
ing is equivalent to a graph readout sum. The overall time
complexity of graph pooling is O(m+ n).

3) Graph Readout: Node representations of each graph are
collapsed into a graph representation through graph readout.
Therefore, the readout of output feature si of i-th level
coarsened graph is calculated as follows:

si =
1

ni

ni∑
j=1

xij

s = s1 ⊕ ...⊕ sk

(9)

where k is the number of layers for each graph, xij denotes
the representation of j-th node of i-th level graph, and ⊕...⊕
denotes combining all representations in a new dimension.
The time complexity of graph readout is O(n). The final
graph representation s ∈ Rk×d is the input of the graph
discriminator.

4) Graph Transposed Pooling: In order to reconstruct node
representations, we need to properly depool a graph. Different
from upsampling from a coarsened graph, we introduce a
differentiable methodology to distribute information from the
coarsened graph to a detailed graph. The proposed distributing
method uses transposed versions of the similar assignment
matrix. The transposed assignment matrix S

(l)
depool ∈ Rnl+1,nl

is calculated as follows:

S
(l)
depool = softmax(GCNl,depool(Z

(l), A(l))T ) (10)

Therefore, reconstructed node representations Zrec ∈ Rn×k×d

are calculated as follows:

Z(l)
rec =

{
Z(l) (l = 1)∏l−1

i=1 S
(i)T
depool × Z(l) (l > 1)

Zrec = Z(1)
rec ⊕ ...⊕ Z(k)

rec

(11)

where ⊕...⊕ denotes combining all node representations in
a new dimension. After that, Zrec is ready to be the input
of our proposed decoder D. The overall time complexity of
transposed pooling is O(m+ n). Note that, in this work, we
add a variational inference module to conjugate node latent
distributions to control the output of our encoder.



D. Variational Inference

We leverage the variational inference before decoding node
features for generating new graphs with observed hierarchical
community structure distribution. We use qϕ(Zvae|Zrec) =∏n

i=1 qϕ(zi|Zrec).zi ∈ Zvae to achieve the mapping
from the reconstructed features to the prior distributions
N (µ, diag(σ2)). And we choose a multi-layer perceptron
(MLP) as our inference model. The inference process is
formulated as follows:

g(Zrec, ϕ) = σ(Zrecϕ0)ϕ1

µ̄ =
1

n

n∑
i=1

gµ(Zrec)i

σ̄2 =
1

n2

n∑
i=1

gσ(Zrec)
2
i

qϕ(zi|Zrec) ∼ N (z̄|µ̄, diag(σ̄2))

qϕ(Zvae|Zrec) =

n∑
i=1

qϕ(zi|Zrec)

(12)

where ϕ denotes the set of parameters in MLP, g(·)i denotes
the i-th row of g(·), and Zvae ∈ Rn×k×d′

is the output of vari-
ational inference module. The time complexity of inference
module is O(kn). According to [31], probabilistic variational
reasoning can make the node representation far away from the
zero-center, which intuitively makes the node representation
more “sparse”. We notice that this is helpful to preserve the
node community structure.

After the variational inference module, we can select new
node features from the prior distributions to generate new
graphs. But we find that fully-connected networks alone cannot
handle the task of generating graphs with complex and hier-
archical community structure in section IV. So we proposed
our graph decoder to address this issue.

E. Graph Decoder

Our proposed graph decoder consists of two steps: first
decoding hierarchical graph representation sequences and then
predicting node links. We embed hierarchical community
structures with Gated Recurrent Unit (GRU) and obtain our
node features hk where k denotes the number of community
structures. Decoded features are obtained by the following
formula:

hl+1 = GRU(hl, Z
(l+1)
vae ). (0 ≤ l < k) (13)

where hl denotes the hidden state of the coarsened graph, h0 is
a zero matrix, Z(l)

vae ∈ Rn×d′
denotes the node features of the l-

th coarsened graph, and hk denotes the decoded node features
with hierarchical community information. After obtaining the
node representations, we give the link predictions as follows:

gθ(hk) = σ(hkθ0)θ1

pθ(Aij |hk,i, hk,j) = σ(gθ(hk,i)
T gθ(hk,j))

pθ(Arec|Zvae) =

n∏
i=1

n∏
j=1

pθ(Aij |hk,i, hk,j)

(14)

where gθ(hk,i) is a two-layer MLP to extract community
information to help generate edges, hk,i denotes the feature of
the i-th node, and Arec ∈ Rn×n denotes the probability matrix
of link prediction. When training decoder on large graphs, to
accelerate this process, we sample ns (ns ≪ n) nodes to
obtain Arec ∈ Rns×ns . Specifically, we sample nodes without
replacement to assemble subgraphs with a strategy according
to node degrees as follows: Pi =

degi∑n
i=1 degi

, where Pi is the
probability to select node i, and degi denotes the degree of
node i. Therefore, the time complexity of the graph decoder
is O(kn+ n2

s).

F. Discriminator and Optimization
1) Graph Discriminator: Discrimination task requires

graph features obtained by the encoder, i.e., output matrix
s ∈ Rk×d of graph readout layer in section III-C3 with
s = E(A). We leverage a two-layer MLP classifier as our
discriminator D which is defined as

Dϕ(A) = σ(MLP (s, ϕ)) (15)

where ϕ denotes the parameters of MLP, and σ denotes the
sigmoid activation function.

2) Discriminator Optimization: Formally, G and D play
minimax game with value function V (G,D) as follows:

min
ϕG

max
ϕD

V (D,G) =
1

n

n∑
i=1

log(D(Ai))

+ Ep(Zvae)∼q(·|Zrec)log(1−D(G(Zvae)))

+ Ep(Zs)∼N (·|0,I)log(1−D(G(Zs)))
(16)

where Zvae and Zs are sampled from the approximate
distributions and Gaussian prior distributions, respectively.
Besides, to use the clustering results to enhance the level of
discriminator, we introduce the clustering consistency Lclus =
−
∑k

l=1 logloss(Sl, Y l
c ), where Sl denotes the assignment ma-

trix introduced in Section III-C2, and Y l
c denotes the ground-

truth community partitions of observed graph. By default, we
leverage louvain [44] community detection algorithm to obtain
hierarchical community detection results as the ground-truth
community partitions. In the training process, we need to
update ϕD through ascending gradient by:

∇ϕD
V (G,D) =

{
∇ϕD

[log(D(A)) + Lclus]

∇ϕD
log(1−D(G(Z)))

(17)

when judging graphs from real datasets, we update parameters
using the upper part of equation 17. Note that, to ensure
both community-structure preserving and other optimization
objectives are well considered, our training process stops only
when both Lclus and log(D(A)) converge. When judging
graphs generated, we update parameters using the lower part
of equation 17.

3) Generator Optimization: The generator aims to mini-
mize the log-probability that the discriminator correctly as-
signs to the graph reconstructed by G. Besides, to im-
prove the performance of the decoder D and guarantee
the permutation-invariance at the same time, we introduce
the mapping consistency Lrec from CycleGAN [17] with



Lrec = 1
n

∑n
i=1 ||E(Ai) − E(A′

i)||2, where A′
i denotes the

fake adjacency matrix reconstructed from Ai. In practice,
the collapse of encoder E can be controlled by the mapping
consistency. We propose computing the gradient of the decoder
with respect to ϕD by descending gradient:

∇ϕD [V (G,D)− Lrec(A
′, A)]

= ∇ϕD [Ep(Zvae)∼q(·|Zrec)log(1−D(G(Zvae)))

+ Ep(Zs)∼N (·|0,I)log(1−D(G(Zs)))

− 1

n

n∑
i=1

||E(Ai)− E(A′
i)||2]

(18)

where A′ denotes the reconstructed adjacency matrices. After
updating the decoder, we propose computing the gradient of
the encoder with respect to ϕE by descending gradient:

−∇ϕE [Lprior(q||p) + Lrec(A
′, A)]

=−∇ϕE [DKL(q(Zvae|Zrec)||p(Z))

+
1

n

n∑
i=1

||E(Ai)− E(A′
i)||2]

(19)

where the Gaussian prior p(Z) is set with p(Z) =∏n
i=1 p(zi) = N (z̄|0, I)n, and Lprior(·||·) denotes calculating

the Kullback-Leibler (KL) divergence between two distribu-
tions. With this modified encoder and decoder, the generation
process can generate new graphs of arbitrary sizes and similar
community structures.

G. Generating New Graphs
After the training, we sample ns (ns ≪ n) nodes to obtain

Asub ∈ Rns×ns and assemble the output matrix Aout ∈ Rn×n

obtained from the generator and verified by the discriminator
into a generated adjacency matrix. Specifically, we initialize
an empty Aout and fill in edges genrated in each subgraph’s
adjacency matrix Asub until the number of generated edge
meets requirement. The binarization strategy that choosing
a threshold to determine each edge and sampling strategy
through Bernoulli distributions parameterized by Aout might
lead to leaving out low-degree nodes and high variance output,
respectively. To address these issues, we use the following
strategy: (1) generating one edge for node i through sampling
from category distribution parameterized by the i-th row of
Aout; and (2) selecting top-k entries of Aout until the number
of edges reaches a pre-defined number. The overall time
complexity of generating new graphs is O(n2).

H. Discussion
Scalability. Though our proposed method is much more
efficient and scalable compared to other learning-based ap-
proaches, it cannot compete with traditional approaches (e.g.,
BTER and ER) in terms of efficiency and scalability because
the efficiency of the deep learning based approach relies on
GPU which has limited memory size compared to that of CPU.
Note that, in terms of graph training, CPGAN can handle
large-scale graphs since we use a sampled graph in each
training iteration. But CPGAN assumes the whole graph can
be accommodated in the GPU memory in the graph simulation
procedure, which limits the scalability of CPGAN. It will be

interesting to develop more scalable learning-based solutions
by making use of CPU memory or even hard disks, which is
non-trivial because the swapping between GPU memory and
other storage medium is time consuming.
Difference with existing learning-based methods. Same as
other learning-based graph generators, some classical models
such as VAE and CycleGAN are also used in our method. We
focus on two new goals: efficiency (scalability) and commu-
nity preserving for the learning-based model, which need the
development of new techniques in this paper. For instance,
we leverage VAE to separately infer the hierarchical struc-
ture information, which is helpful for community-preserving.
Besides, the mapping consistency from CycleGAN and VAE
are used for permutation-invariant graph generation, which
is essential for our scalable implementation of our sampling
strategy.

TABLE II
DETAILED STATS OF INCLUDED DATASETS

#Nodes #Edges #Comm. dmean CPL GINI PWE

Citeseer 3327 4732 473 2.8446 5.9389 0.6769 2.8757
PubMed 19717 44338 2488 4.4974 6.3369 0.8844 1.4743
PPI 2361 6646 371 5.8196 4.3762 0.7432 1.9029
3D Point Cloud 5037 10886 1577 4.3224 32.40 0.8278 1.9276
Facebook 50515 819090 8010 32.43 14.41 0.7164 1.5033
Google 875713 4322051 9863 9.871 6.3780 0.6729 1.8251

IV. EXPERIMENT

We perform extensive experiments to validate the effec-
tiveness of our proposed methods. We describe the experi-
mental settings first. Then, we give the experiment results
of preserving community structure and generating realistic
graphs compared with state-of-the-art baselines. At last, the
model efficiency and memory consumption experiments are
conducted, respectively.

A. Experiment Settings
Note that the source code and dataset used in the exper-

iments are publicly available in GitHub (https://github.com/
xiangsheng1325/CPGAN).

Dataset. We conduct experiments on six representative
datasets in the literature including two citation networks (Cite-
seer and Pubmed) [46] 2, PPI [47] 3, 3D point cloud [48] 4,
Facebook [49] 5, and Google web pages [50] 6. These datasets
span multiple domains and have different community struc-
tures. The graph statistics of these datasets are introduced on
Table II, where “#Comm.” denotes the number of communi-
ties. The detailed information of the six datasets are:

• Citation Networks. Citeseer and Pubmed are two typical
citation networks, where nodes denote publications, and
edges denote the citation relationships among publica-
tions. The Citeseer and Pubmed datasets contain 3327
and 19717 publications, and 4732 and 44338 citations,
respectively.

• PPI. Protein-protein Interaction (PPI) network contains
2361 nodes and 6646 edges, each node representing one

2https://linqs.soe.ucsc.edu/data
3http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
4http://www.first-mm.eu/data.html
5https://snap.stanford.edu/data/gemsec-Facebook.html
6https://snap.stanford.edu/data/web-Google.html



TABLE III
PERFORMANCE EVALUATION OF COMPARED MODELS FOR GRAPH COMMUNITY STRUCTURE PRESERVING TASKS IN EACH DATASET. NMI AND ARI

MEASURE THE SIMILARITY BETWEEN COMMUNITY STRUCTURES OF GENERATED GRAPH AND THE ONE OF OBSERVED GRAPH, WHERE THE HIGHER IS
BETTER.

Graph Citeseer Pubmed PPI 3D Point Cloud Facebook Google

NMI(e-2) ARI(e-2) NMI(e-2) ARI(e-2) NMI(e-2) ARI(e-2) NMI(e-2) ARI(e-2) NMI(e-2) ARI(e-2) NMI(e-2) ARI(e-2)

SBM 19.7±0.9 1.9±0.1 4.4±0.2 0.3±0.1 11.3±0.7 1.2±0.1 37.0±1.3 11.4±0.7 14.5±2.0 2.1±0.3 24.4±0.9 1.3±0.4
DCSBM 27.1±0.8 1.7±0.1 18.9±0.2 0.3±0.1 18.6±0.8 1.8±0.3 37.3±1.4 11.5±0.8 17.5±1.5 1.9±0.3 29.4±0.6 5.7±0.5
BTER 27.3±0.7 1.8±0.1 19.1±0.2 0.3±0.1 19.0±0.7 1.7±0.1 38.1±1.2 12.1±0.8 17.9±1.2 2.1±0.2 30.3±0.7 5.8±0.5
MMSB 26.7±0.9 4.4±1.0 OOM OOM 15.4±0.6 0.8±0.4 7.1±0.4 1.3±0.3 OOM OOM OOM OOM
VGAE 63.0±0.4 29.0±1.5 42.0±0.3 15.0±0.4 50.4±0.6 40.0±1.2 57.0±0.8 8.2±1.1 OOM OOM OOM OOM
Graphite 62.8±0.7 28.2±2.1 43.0±0.5 15.1±0.4 52.3±0.8 33.4±1.9 58.8±0.4 13.2±0.3 OOM OOM OOM OOM
SBMGNN 62.6±0.5 21.5±1.0 39.3±0.5 14.1±0.5 56.9±0.4 31.0±1.6 59.2±0.9 15.9±1.1 OOM OOM OOM OOM
NetGAN 57.9±0.5 20.1±0.3 OOM OOM 55.2±0.5 30.2±0.3 67.4±0.9 37.8±2.6 OOM OOM OOM OOM

CPGAN 72.5±0.4 44.3±1.5 45.8±0.9 34.1±1.1 57.0±0.7 44.2±1.3 70.6±0.6 39.9±1.4 54.7±1.0 28.4±1.6 38.7±0.5 30.8±0.5

yeast protein. Edges are generated if there are interactions
between two proteins.

• 3D Point Cloud. Graph of points of household objects
with 5037 nodes and 10886 edges, where nodes denote
the objects, and edges are generated for k-nearest neigh-
bors which are measured w.r.t Euclidean distance of the
points in 3D space.

• Facebook. A real-world social network with 50515 nodes
and 819090 edges, each node denoting one page. Edges
are generated if there are mutual likes among them.

• Google. Web graph with 875713 nodes and 4322051
edges, where nodes represent web pages and edges rep-
resent hyperlinks between them.

Compared Methods. We compare our method with both the
traditional models and recent deep graph generative mod-
els. All baseline models are designed to learn features on
a set of graphs and generate new simulated graphs. The
conventional baselines include: E-R [7], B-A [8], Chung-
Lu [23], SBM [20], DCSBM [21], BTER [22], Kronecker [12],
and MMSB [10]. The learning-based generative baselines
are: VGAE [31], Graphite [33], SBMGNN [15], GraphRNN-
S [13], NetGAN [14], and CondGen-R [17]. Note that we
choose the scalable variant of GraphRNN and CondGen as
baselines. In order to validate the effectiveness of CPGAN’s
sub-modules, we deploy some variants of our method, which
are seperately denoted as CPGAN-C ("C" for "replacing the
node decoding operation with a concatenation"), CPGAN-noV
("noV" for "not to use variational inference"), and CPGAN-
noH ("noH" for "not to use hierarchical pooling") in the
experiment. The CPGAN is our proposed graph generator in
this paper.

Parameter Settings and Evaluation Metrics. The included
algorithms and evaluating scripts are implemented and com-
piled through Python-3.6, PyTorch-1.8.1, CUDA-11.1, and
GCC-4.8.5 in our experiments. The experiments are operated
on a machine with Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, 80 GB RAM and NVIDIA RTX 3090 with 24
GB memory. We use one CPU core and one GPU for every
algorithm. In the experiment, we set the graph convolution
kernel size to 128 in the ladder message transmission encoder.
The learning rate is set to 0.001, the graph pooling size to 256.

For various baselines, we employ the original hyperparameters
settings of the compared models. To evaluate the performance
of all methods, we leverage the following benchmark metrics
in the experiment:
Deg.: Maximum Mean Discrepancy (MMD) of degree distri-
bution measuring for the difference between degree distribu-
tions of two graphs.
Clus.: MMD of clustering coefficient distribution measuring
for the difference between clustering coefficient distributions
of two graphs.
CPL: The difference of characteristic path length between two
graphs.
GINI: The difference of GINI index between two graphs,
where GINI is a common measure for inequality in a degree
distribution.
PWE: The difference of power-law exponent between two
graphs.
NMI and ARI: To evaluate the community-preserving prop-
erty, we compare the community structure similarity between
the observed graphs and the generated graphs. Our evaluating
method is based on the louvain [44] community detection
algorithm. louvain, which has a complexity of O(m+n), can
quickly and hierarchically detect the community structure of
the graph, and obtain the community membership of nodes
unsupervised based on maximizing modularity Q. The mod-
ularity of community memberships of a graph is defined as
follows:

Q =
1

2m

∑
i,j

[Aij −
didj
2m

]δ(ci, cj) (20)

where m represents the number of edges, di denotes the degree
of node i, the δ(u, v) is 0 when u = v and 1 otherwise and
ci denotes the community membership to which node i is
assigned. We suppose that graphs having the same community
structure should have the same community detection results,
so we use two popular clustering metrics7, Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI), to quan-
titatively evaluate the community structure of the generated
graphs.

7https://scikit-learn.org/stable/modules/classes.html#clustering-metrics



TABLE IV
PERFORMANCE EVALUATION OF COMPARED MODELS FOR GRAPH GENERATION TASKS IN EACH DATASET. THE EVALUATION RESULTS ARE THE

ABSOLUTE DIFFERENCES FROM TRUE MEASURES, WHERE THE LOWER IS BETTER.

Graph Citeseer 3D Point Cloud Google

Deg. Clus. CPL GINI PWE Deg. Clus. CPL GINI PWE Deg. Clus. CPL GINI PWE

E-R 1.27e-2 1.71e-2 17.5 8.86e-2 0.12 0.349 2 25.6 0.237 13.6 6.24e-2 1.36 13.17 3.99e-2 0.221
B-A 1.40e-2 1.25e-2 19.4 0.159 1.43 0.546 2 27.7 0.331 12.2 1.94e-2 1.36 11.1 6.16e-2 0.54
Chung-Lu 1.47e-2 1.73e-2 18.5 9.83e-2 0.15 0.353 2 25.7 0.222 13.7 6.48e-2 1.29 13.32 7.31e-2 0.624
SBM 1.36e-2 4.94e-3 12.4 7.87e-2 5.13e-2 0.317 1.99 23.4 0.209 13.8 0.111 0.886 6.93 0.113 0.892
DCSBM 2.40e-2 3.44e-3 13.3 0.142 8.14e-2 0.309 1.98 23.4 0.218 13.8 8.48e-2 0.865 11.8 9.17e-2 0.595
BTER 1.21e-2 2.71e-3 13.1 7.73e-2 3.03e-2 0.301 2 22.6 0.207 13.6 1.85e-2 0.834 6.67 3.93e-2 0.210
Kronecker 2.58e-2 1.91e-2 18.5 0.132 3.12e-2 0.370 2 26.8 0.240 13.8 0.102 1.28 15.1 5.19e-2 1.2
MMSB 2.98e-2 1.84e-2 17.9 0.173 0.186 0.339 2 25.9 0.234 13.7 OOM
VGAE 0.123 3.78e-2 18.2 0.477 0.126 0.731 1.96 30 0.864 13.8 OOM
GraphRNN-S 1.34e-3 1.48e-3 17.3 7.32e-2 0.176 OOM OOM
CondGen-R 8.42e-2 0.14 20.8 0.362 0.295 0.604 1.73 30.4 0.658 14.1 OOM
NetGAN 1.07e-3 1.51e-3 16.5 0.136 0.154 0.415 1.72 26.3 0.542 14.6 OOM

CPGAN 1.25e-3 2.26e-3 15.3 7.23e-2 9.32e-2 0.410 1.49 18.1 0.355 10.8 1.47e-2 0.672 6.45 3.43e-2 0.118

(a) (b)

(c) (d)

CPGAN

pooling layers

Fig. 5. Parameter sensitivity experiment results. Points closer to the real
statistics are better.

B. Graph Generation
We introduce the experiments on several perspectives:

preserving community structure, generative distribution dis-
tance, and parameter sensitivity. We conduct representative
experiments and prove the superiority of our model in the
task of graph generation, and some experiments with similar
observations are excluded.

Preserving Community Structure. In this experiment, we
first evaluate the generated graph by comparing community
structures based on louvain [44] community detection algo-
rithm. We compare the similarity of detection results between
the observed graph and generated graph. Table III shows
the performance of each method in preserving community
structure, which is one of the main tasks of this paper. Note
that several baseline methods are excluded because of the
unstable node permutations. Some algorithms cannot do the
graph simulation on some graphs due to the limit of memory,
and the corresponding results are marked as “OOM” in the
table.

The first 8 rows are the results of baseline methods. As
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Fig. 6. Model robust experiment results. The left part is the performance of
several compared methods, and the right part is the performance of different
hyper parameter settings. Points lower are better.

expected, CPGAN demonstrates the best performance among
all graph generators evaluated, especially for the evaluation of
ARI. It is shown that BTER achieves the best performance
compared with other traditional baselines. Nevertheless, its
performance is not competitive compared to the learning-
based models even most of them do not explicitly consider the
community preserving property. As stressed in Section II-B2,
SBMGNN does not utilize the deep neural network for the
purpose of community preserving and hence does not show
an advantage in the performance evaluation compared to other
learning-based models.

Generative Distribution Distance. Table IV shows the per-
formance of different methods in graph generation. Each
evaluation metric represents the difference between real graphs
and generated graphs. The first 12 rows are the results of
baseline methods. It is shown that BTER has the best per-
formance of the traditional graph generators (first 6 Lines).
The deep learning-based generative models (Lines 7-12) can
significantly improve the performance. It is shown that, in
addition to the best performance on community preserving,
CPGAN also demonstrates competitive performance on other
quality measures on large graphs compared to the baselines.
In two datasets with larger graph sizes, our method performs
considerable improvements compared to the baselines. It is
reported that CPGAN achieves one out of five best results
in Citeseer, three out of five best results in 3D Point Cloud,



TABLE V
PERFORMANCE COMPARISON FOR GRAPH RECONSTRUCTION TASKS IN EACH DATASET.

Graph PPI Citeseer

Deg. Clus. CPL GINI PWE Train NLL Test NLL Deg. Clus. CPL GINI PWE Train NLL Test NLL

VGAE 0.257 1.69 6.11 0.342 0.633 1.96 3.61 9.01e-2 1.6 1.45 0.263 0.149 2.26 3.78
Graphite 0.315 0.815 10.9 0.362 0.760 2.09 4.38 0.306 1.53 2.14 0.311 1.17 2.41 4.15
SBMGNN 0.356 1.61 10.9 0.397 0.777 2.20 4.00 0.217 1.32 2.14 0.358 0.517 2.31 4.26
CondGen 0.139 1.16 12.8 0.231 1.09 2.07 3.82 0.166 1.13 3.57 0.196 1.54 2.47 3.97

CPGAN 6.21e-2 0.243 11.31 7.43e-2 0.437 1.84 3.52 8.49e-2 0.498 1.35 1.38e-2 3.16e-2 1.78 3.68

TABLE VI
PERFORMANCE EVALUATION OF SUB-MODELS FOR GRAPH COMMUNITY PRESERVING AND GRAPH GENERATION TASKS IN 3 DATASETS. THE NMI AND

ARI ROWS SHOW THE COMMUNITY-PRESERVING MEASURES OF GENERATED GRAPHS, WHERE THE HIGHER IS BETTER, WHILE OTHERS ARE THE
ABSOLUTE DIFFERENCES FROM TRUE MEASURES, WHERE THE LOWER IS BETTER.

Graph PubMed PPI Facebook

NMI(e-2) ARI(e-2) Deg. Clus. NMI(e-2) ARI(e-2) Deg. Clus. NMI(e-2) ARI(e-2) Deg. Clus.

CPGAN-C 32.1 14.5 2.38e-3 2.23e-3 51.2 39.3 2.47e-3 1.35e-2 53.3 26.1 1.20e-3 1.43e-2
CPGAN-noV 31.3 14.3 3.03e-3 5.14e-3 50.5 39.0 2.77e-3 1.76e-2 52.9 25.3 1.24e-3 1.56e-2
CPGAN-noH 28.8 13.2 3.96e-3 6.52e-3 49.7 38.4 3.49e-3 2.30e-2 50.1 23.2 1.96e-3 1.79e-2

CPGAN 45.8 34.1 2.08e-3 1.81e-3 57.0 44.2 2.35e-3 1.12e-2 54.7 28.4 1.18e-3 1.35e-2

and all five best results in the Google web graph dataset.
According to the experiments, CPGAN achieves the best
results on PubMED and FaceBook datasets, similar to the
conclusions on Google datasets. And CPGAN shows the best
performance on 3D Point Cloud data sets. Besides, CPGAN
has competitive performance on PPI dataset, similar to the
conclusions on 3D Point Cloud data sets. We notice that on
PubMed, FaceBook, Google datasets, the compared learning-
based baseline algorithms all lead to memory overflow due
to their high space complexity. As expected, CPGAN always
outperforms CPGAN-C, demonstrating the effectiveness of our
new graph decoding module.

Parameters Sensitivity. Figure 5 illustrates the result of
parameter sensitivity experiments. We report the statistical
differences between the generated graph and the real graph
according to the changes of spectral embedding dimension
(Figures 5a and 5c) and the number of hierarchies ((Figures
5b and 5d)), where the number of hierarchies denotes the
number of node clustering results in ladder encoder. It is clear
the level of hierarchies around two achieves the best perfor-
mance, which proves the essence of preserving community
information in the learning process. Besides, the change of
the dimension has no significant influence on the performance
of the model. Based on the sensitivity experiment, we chose
the best parameter (the input dimension of four and the level
of hierarchical structures of two) in our experiment.

The left part of Figure 6 illustrates the comparison of model
robustness and the training difficulty of our methods. We select
the models with similar architecture and hyper-parameters
to compare. When the hyper-parameters are traversed in the
interval, our method is obviously more robust than other
methods. Other experimental results on model robustness can
draw the same conclusion. Based on the model robustness
comparison experiment, we chose the best parameter settings
of other baseline methods (the input dimensions and the hidden
dimensions). The right part of Figure 6 illustrates the tuning

difficulty of hyper-parameters. Our method is stable and has
few collapses or instability in the case of different hyper-
parameters. Based on the model tuning difficulty experiment,
we chose the best training strategy (the learning rate of 0.001
and decay of 0.3 per 400 epochs) in our experiment.

TABLE VII
TIME CONSUMPTION (SECONDS) PER GRAPH GENERATION.

#Nodes 0.1k 1k 10k 100k

E-R 4.6e−4 9.0e−3 0.46 10.1
B-A 1.0e−3 1.2e−2 0.11 1.17
Chung-Lu 7.2e−4 2.5e−3 0.18 2.38
SBM 6.1e−3 0.09 2.58 37.1
DCSBM 6.2e−3 0.09 2.69 39.3
BTER 1.28e−3 1.9e−3 0.16 0.25
MMSB 6.1e−3 0.09 2.56 -
Kronecker 8.5e−3 0.08 1.00 9.69
GraphRNN-S 0.27 4.74 63.6 -
VGAE 4.2e−3 0.04 0.38 -
Graphite 6.1e−3 0.06 0.64 -
SBMGNN 0.01 0.11 1.18 -
NetGAN 8.7e−3 0.09 1.12 -
CondGEN-R 8.3e−3 0.15 - -
CPGAN 9.1e−3 0.08 0.95 86.1

TABLE VIII
TIME CONSUMPTION (MINUTES) OF THE ENTIRE TRAINING PROCESS.

#Nodes 0.1k 1k 10k 100k

MMSB 0.11 0.91 40.3 -
Kronecker 1.39 1.55 3.25 4.73
GraphRNN-S 1.63 15.4 161 -
VGAE 0.06 0.42 9.75 -
Graphite 0.07 0.47 10.6 -
SBMGNN 0.08 0.63 12.4 -
NetGAN 0.27 2.80 31.1 -
CondGEN-R 0.18 25.3 - -
CPGAN 0.35 0.70 6.39 32.9

C. Graph Reconstruction

In this experiment, we use the complete dataset of PPI
and Citeseer. We randomly select 80% edges of the dataset



TABLE IX
PEAK GPU MEMORY USAGE (MIB) DURING TRAINING

#Nodes 0.1k 1k 10k 100k

MMSB 1575 1709 18529 OOM
GraphRNN-S 1913 1959 5501 OOM
VGAE 1719 1759 4799 OOM
Graphite 1719 1761 4819 OOM
SBMGNN 1719 1767 5243 OOM
NetGAN 2237 2552 5008 OOM
CondGEN-R 1722 1789 - -
CPGAN 1728 1760 2467 7930

as the training set and employ the model to reconstruct
the whole graph, including the rest 20% test set edges. We
compute the negative log-likelihood (NLL) of the score given
by the discriminator and report the average number from
train and test data sets. We exclude the E-R, B-A, and other
methods that cannot employ to reconstruct graphs, and the
experiments on other dataset preserves the conclusion that
our method improves the performance among other baselines.
Table V reports the experimental results. As we can see,
our method achieves the most competitive results in the PPI
dataset and perform the best in the Citeseer dataset with
significant improvements to VGAE, Graphite, SBMGNN, and
CondGen. The results are in accord with graph generation
experiments, which prove the effectiveness of our method in
realistic graph generation. We notice that the performance of
the GAN-based models, including CPGAN, are not good for
the measure of CPL on graphs with low CPL value (e.g.,
the CPL value of PPI dataset is 4.38 as shown in Table II,
which is the smallest one in 6 datasets). The reason is that
the edges of graphs with low CPL value tends to be denser
than ones with high CPL value. The dense edges may lead
to a more complex discriminator. So the generator part of
GAN will make more complex decisions to avoid the strong
attack from discriminator part of GAN. Then the structure of
dense graph generated by the GAN-based graph generative
model is not stable in adversarial training process. And the
CPL is a structure-sensitive measurement of generated graphs.
Therefore, GAN-based models (e.g., CondGen and CPGAN)
perform worse than other baseline models on graphs with
small CPL value.

D. Ablation Study
We evaluate the effectiveness of each sub-module in our

proposed method in this subsection. In Table VI, the first 3
rows show the performance of our proposed model’s varia-
tions. It can be seen that our proposed method outperforms all
the variants. The row 2 of Table VI shows that the variant
CPGAN-noV performs worse than our proposed CPGAN,
which demonstrates the effectiveness of variantional inference.
We can also find that the variant CPGAN-noH shows the worst
performance among these variants, which demonstrates the
effectiveness of our proposed model’s components, especially
for the ladder encoder with hierarchical pooling.

E. Model Efficiency and Scalability
We evaluate the efficiency and scalability of the graph

generators in this subsection. Table VII reports the time
consumption of inferring a new graph where the number of

nodes varies from 0.1K to 100K. Table VIII chronicles the
time consumption of the entire training process and Table IX
details the peak memory usage during the training process.
As expected, the traditional graph generators such as BTER,
Chung-Lu, E-R, B-A, SBM, DCSBM, and Kronecker outper-
form the learning-based graph generators in terms of efficiency
and scalability, especially on large graphs. On the other hand,
it is shown that CPGAN has the best efficiency and scalability
among the learning-based approaches when the size of the
graph grows. For instance, only CPGAN can handle the graph
with size 100K in Tables VII, VIII and IX.

F. Summary

It is reported that traditional graph generators (e.g., BTER
and ER) significantly outperform learning-based graph gener-
ators in terms of efficiency and scalability, especially on large
graphs. Due to the limitation of the learning-based methods
as discussed in subsection III-H, all learning-based methods,
including CPGAN, cannot handle larger dataset with millions-
scale nodes under current experiment setting (e.g., 24GB
GPU memory). This suggests that BTER is the best choice
when simulating large-scale graphs since it has the best graph
simulation quality among all traditional graph generators and
competitive performance in terms of efficiency and scalability.
Nevertheless, traditional graph generators are not good choices
in some applications where high simulation quality is required
on real-life graphs. On the other hand, existing learning-based
approaches can achieve good simulation quality, but have
poor performance in terms of efficiency and scalability. It is
shown that CPGAN has the best efficiency and scalability
among the learning-based approaches when the size of the
graph grows. Given the best performance on community-
preserving and competitive performance on other simulation
quality evaluation metrics, we boast that CPGAN achieves
a very good trade-off between graph simulation quality and
efficiency (scalability) compared to other approaches.

V. CONCLUSION

In this paper, we propose a deep generative model named
CPGAN to simulate real-life graphs. Our model is designed
to keep community structure together with other important
properties in the graph simulation process. The simulation
quality and efficiency (scalability) are two important but
contradictory requirements of graph generators in practice, and
our method can achieve a good trade-off, especially in the
large real-world networks, compared to existing general graph
generators.
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