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Encoding for Fraudulent Transactions Detections
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Abstract—Financial transaction systems have become the crit-
ical backbone of modern society, and the sharp increase in
fraudulent transactions has become an unavoidable significant
topic. Their presence poses a severe threat to financial markets,
impacting the health of the economic and social welfare systems
of various countries. However, most existing fraud detection
methods are limited to detecting individual fraudulent entities
within static transaction networks, which are neither suitable
for continuously changing dynamic transaction networks nor
capable of detecting the increasingly prevalent organized fraud
crimes. This paper introduces a novel approach, Parallel Graph
Learning with Temporal Stamp Encoding (PGLTSE). On the
one hand, it designs a history information module to perform
temporal dimension feature learning to adapt to the contin-
uous changes in transaction information in Continuous-Time
Dynamic Graphs (CTDG). On the other hand, it designs a gang-
aware risk propagation algorithm to infer the risk of organized
fraudulent activities in the global transaction relation graph. By
simultaneously conducting parallel graph representation learning
in both homogeneous global transaction relation graphs and
heterogeneous local entity interaction graphs, it aggregates local
interaction and global association information for end-to-end
training. Extensive experiments on diverse real-world datasets
substantiate the superior performance of PGLTSE over existing
methods, demonstrating its practical efficacy in detecting complex
and evolving fraudulent behaviors in financial networks.

Index Terms—Fraud Detection, Continuos Time Dynamic
Graphs, Graph Neural Network, Risk diffusion.

I. INTRODUCTION

THROUGHOUT the history of financial services, the
battle against fraud, and the efforts to prevent it have been

an ongoing tug-of-war [1], [2]. From individual opportunists
to organized crime groups, fraudsters have continually sought
to exploit loopholes in financial transaction systems for illicit
gain [3], [4]. As the digital revolution transformed the financial
market, these malicious entities employed increasingly sophis-
ticated methods of fraudulent transactions, posing significant
challenges to market regulation and the financial security of
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transaction parties, and seriously challenging the integrity and
safety of the market environment [5], [6].

The digitization of finance, particularly the shift from tradi-
tional platforms to online platforms, has significantly altered
the landscape of financial transactions. Before the advent of
e-commerce and the internet, fraud detection relied on labor-
intensive manual monitoring and verification of transactions
[7], [8]. For example, bank clerks would meticulously inspect
checks for signs of forgery, a process fraught with inefficien-
cies and vulnerabilities, ill-equipped to handle the cunning of
fraudsters. However, the advent of digital technology brought
about a paradigm shift. By the end of the 20th century,
although electronic monitoring tools were introduced, they
were initially primitive and struggled to adapt to the evolving
strategies of fraudsters [9]. Fraudulent actors commenced
leveraging techniques such as phishing, malware injections,
and Trojan attacks to conduct their schemes.

In the early 21st century, the field of fraud detection and
prevention began to utilize more advanced technologies [10],
[11]. Researchers developed network visualization tools to
enhance the detection of suspicious online activities, com-
pletely changing the methods of monitoring and preventing
fraudulent activities. By 2012, a new era of anti-fraud had
arrived, enabling the construction of individual risk profiles
from a broad range of data sources, predicting criminal tactics
likely to be used by fraudsters through rigorous verification of
real user identities and comprehensive scrutiny of user data,
including age verification and transaction history. This break-
through improved transaction monitoring, screening methods,
and tracking capabilities, significantly reducing false positives.
These technologies allowed for analyzing vast amounts of
transaction data, using predictive analytics and machine learn-
ing to anticipate risks and eliminate threats [12]–[14]. Modern
enterprises and financial institutions can not only detect fraud
more accurately but also predict and prevent it beforehand.

Despite these advancements, fraudulent methods continue to
innovate, with criminals adopting more complex approaches,
such as device emulation, social engineering, and sophisticated
identity fraud strategies to counter past anti-fraud technologies,
increasingly operating in gangs involving money laundering,
insurance fraud, loan fraud, and electronic currency fraud
among various transaction types. These illegal activities not
only harm consumer interests but also undermine the fairness
and stability of financial markets. Thus, effectively identifying
and preventing fraudulent transactions has become a key
research topic in the fintech sector.

In recent years, machine learning technology has made
significant advances, clearly outperforming traditional statis-
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tical methods in terms of efficiency, cost-effectiveness, and
accuracy [15], [16]. Initially, machine learning methods such
as Random Forests and Gradient Boosting Decision Trees
provided valuable insights, paving the way for innovation.
Later, the explosion of deep learning brought a new paradigm
to the technological frontier [17], [18], especially the use
of Graph Neural Networks (GNNs) [19], [20], which have
shown particular effectiveness in detecting complex patterns
and anomalies in financial networks [21]–[23]. Traditional
methods often regard order nodes in transaction networks as
isolated data entities. In contrast, GNNs construct and learn
from transaction relationship graphs, which allows them to
capture the topological information within these networks.
This capability enables GNNs to extract behavioral patterns
of fraudsters and effectively identify and mitigate fraudulent
transactions [24].

However, previous GNN methods have several limitations.
They typically regard large-scale transaction data as static
transaction networks, with the mining of temporal historical
data relying on manually designed feature engineering (e.g.,
statistics within a certain time window) and lacking in mining
information on the temporal dimension. Even attempts to
learn temporal dimension features in transaction data are often
made by converting dynamic graphs into static graphs through
temporal snapshots, implicitly modeling the learning objects
of graphs as Discrete Time Dynamic Graphs (DTDG), but
still insufficient to handle more practical Continuous Time
Dynamic Graphs (CTDG) data types. Additionally, existing
graph-based fraud detection methods mostly learn only one
type of relationship from entity graphs, which inevitably leads
to suboptimal detection performance. Moreover, current GNN-
based transaction anti-fraud methods typically only detect sin-
gle fraudulent transactions represented as anomalous nodes in
graphs, while the community structure—holding information
related to criminal gangs—of users and merchants is largely
ignored. Community structure retains the inherent high-order
structural properties of graphs, for example, communities in
real networks may represent real social groups, while com-
munities in guaranteed loan networks may indicate dense loan
relationships and financial institution groups. Understanding
this community-level risk association information can better
discover fraudulent criminal gangs.

Therefore, we propose a novel method named Parallel
Graph Learning with Temporal Stamp Encoding for Fraudu-
lent Transactions Detection (PGLTSE) with key contributions:

• To facilitate the model’s capacity to adapt to the evolving
dynamics of graphs, a history module has been designed
to store historical information of nodes within the trans-
action network. The model is better adapted to evolving
fraud techniques by capturing hidden temporal correlation
patterns between fraudulent transactions and identifying
different fraudulent behaviour patterns and trends.

• We employ parallel graph learning, namely learning si-
multaneously from the Homogeneous Global Transaction
Relation Graph and the Heterogeneous Local Entity Inter-
action Graph through GNNs, to obtain better node hidden
embeddings to detect rapidly changing fraud behavior
patterns.

• A gang-aware risk propagation algorithm has been de-
vised to infer the upstream and downstream transactional
background of organized fraud behaviors, as part of the
learning process for the global transaction relation graph.
This allows us to identify group characteristics within
gang fraud transactions and to discover collusive crimes
and fraud gangs using graph attention layers.

• We use various real transaction data to train and validate
the model, ensuring its robustness and applicability in
various practical financial transaction business scenarios.

Roadmap. The rest of this paper is organized as follows:
Section II defines the problem of fraud transaction detection
in financial dynamic transaction networks and reviews related
work. Section III details our proposed method and optimiza-
tion objectives. Section IV describes how we model temporal
dimension features in data to learn historical transaction infor-
mation. Section V elaborates on our experimental results and
case studies. Section VI concludes and discusses our research.

II. PRELIMINARIES

A. Background and Related Works

Fraudulent transactions, characterized by deception and
misleading information for illegal gains, are prevalent across
various sectors including finance, e-commerce, and insurance.
In the financial market, fraud manifests in diverse forms such
as credit card fraud, insurance fraud, and securities fraud. For
instance, fraudsters may use stolen credit card information
for unauthorized purchases or fabricate accidents or illnesses
to claim insurance payouts. They may also mislead investors
into buying subpar stocks, thereby swindling them. Given the
gravity of this issue, significant research has been directed
towards anti-fraud measures in financial transactions.

1) Fraudulent Transaction Detection: Fraudulent transac-
tion detection has been extensively studied using various
machine learning and statistical techniques. Traditional meth-
ods include supervised learning approaches such as logistic
regression [25], [26], decision trees [27], [28], and support
vector machines [29], [30], which rely on hand-crafted features
extracted from input data [31]. Recently, deep learning tech-
niques have been employed to automatically learn complex
features from raw fraudulent transaction data, improving the
accuracy of fraud detection systems [32], [33]. However, these
deep-learning approaches typically focus on individual entities
and do not fully exploit the relationships between entities (such
as users and transactions). Recently, graph-based methods
have gained popularity in fraudulent transaction detection
due to their ability to capture relationships between entities.
These methods represent input data as graphs, where nodes
represent entities (e.g., users, transactions) and edges represent
relationships (e.g., transaction links). Techniques such as graph
convolutional networks (GCNs) and graph attention networks
(GATs) have been applied to fraud detection, showing im-
proved performance over traditional methods [34]. CARE-
GNN [35] was proposed to select better neighbors for graph-
based fraud detection tasks. PC-GNN [36] was designed to
solve the node label imbalance problem in fraud detection.
BW-GNN [37] was proposed to address the “right-shift” issue
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in the graph anomaly detection. However, these approaches
often assume a static graph structure and may not fully ex-
ploit the dynamics inherent in real-world financial transaction
networks. Some methods, such as GTAN [20] and DGA-
GNN [38], were designed for semi-supervised fraud detection
in temporal graphs. While the usage of temporal graph has
been explored in existing literature, our approach combines
parallel graph learning with temporal stamp encoding, offering
a temporal graph learning framework.

2) Temporal Graph Learning: Despite the advancements in
fraud detection, most methods were confined to static graph
data [5], [34], [37], [39], with few extending to Discrete-Time
Dynamic Graphs (DTDG) using snapshots, lacking consid-
eration of temporal variables and falling short of handling
continuous-time dynamic graphs. Continuous-Time Dynamic
Network Embeddings (CTDNE) [40] addressed this by cap-
turing dynamic changes in graph structures over time. Based
on Node2Vec, CTDNE incorporates temporal variables into
embedding vectors, enhancing fraud detection by representing
evolving relationships within fraud networks. However, the
increased complexity of dynamic modeling in CTDNE can
result in higher computational costs, necessitating careful
optimization and parameter tuning. CTDNE’s focus on tempo-
ral dynamics marked a promising advancement for detecting
evolving fraudulent activities. Building on CTDNE’s prin-
ciples, Temporal Graph Networks (TGN) [41] significantly
advanced fraud detection by modeling temporal dependencies.
Concurrently, Temporal Graph Attention Networks (TGAT)
[42], inspired by both TGN and CTDNE, capture the dynamic
evolution of graph structures over time. By incorporating
attention mechanisms, TGAT enhances analytical capabilities
and optimizes performance, prioritizing temporal dynamics
and demonstrating exceptional proficiency in detecting dy-
namically evolving fraudulent activities. Incorporating graph
models such as GCNs, GAT, and TGAT into fraud detec-
tion systems has greatly improved accuracy. These models,
building on each other’s strengths, have revolutionized under-
standing and combating fraudulent activities within complex
networks. The introduction of temporal dynamics modeling
has been particularly transformative, despite the increased
computational demands. Effective resource allocation, opti-
mization strategies, and distributed computing solutions are
crucial to addressing these computational challenges.

In summary, integrating advanced graph models and tem-
poral dynamics modeling into anti-fraud efforts constitutes a
significant leap forward. Identifying evolving fraud patterns
within complex networks is crucial for maintaining a proactive
stance against deceptive practices. In our work, we designed
a history information module to perform temporal dimension
feature learning to adapt to the continuous changes in trans-
action information in dynamic graphs.

B. Problem Statements

In the realm of daily economic operations, a transaction
usually unfolds between two distinct groups of entities: (a)
the merchants providing services and (b) the consumers pur-
chasing them. This interactive network can be conceptualized

as a bipartite graph. Moreover, when a transaction implicates
the same merchant or consumer, it can be perceived as inter-
connected, thereby modeled into a comprehensive transaction
homogeneity graph.

Temporal Graph. Extract timestamps and construct a tem-
poral graph G = {x(t1), x(t2), . . .}, where x(ti) represents a
change occurring in the graph at time ti (adding or removing
nodes, edges, and feature modifications, simplified to edge
additions and removals in this study). Continuous events are
used to generate node representations for each time t, denoted
as Z(t) = (z1(t), . . . , zn(t)).

In this study, we define the consumer-merchant relation
graph as G(C,M, E). Here, C = {vc1, . . . , vcNC

} represents
the set of consumer nodes, M = {vm1 , . . . , vmNM

} denotes
the set of merchant nodes, and E = {et11 , . . . , et2NE

} signifies
different edge increase/decrease events within the graph, which
correspond to the financial transactions between consumers
and merchants at different moments like t1 and t2. The quan-
tities of consumers, merchants, and transactions are indicated
as NC , NM , and NE , respectively. Concerning the neighbors
within the graph, let Nv represent the set of nodes in node v’s
one-hop neighbors, such that Nvc

i∈C ⊆ M and Nvm
j ∈M ⊆ C.

Each consumer node vci is characterized by a dC-dimensional
feature vector h0

c,i ∈ RdC

, while each merchant node vmj
is described by a dM -dimensional vector h0

m,j ∈ RdM

. For
the edge increase/decrease event etk at time t, we define
h0
k,t ∈ RdE

as its attribute vector and let Ye = {0, 1}NE be
the set of labels for whether a transaction order is fraudulent
or not, with 0 indicating normal and 1 indicating fraud.

Additionally, we construct the homogeneous transaction
relation graph Gtr(Vtr, Etr), where each node represents a
transaction. An edge eij is established between two trans-
actions vi, vj ∈ Vtr if both transactions involve the same
consumer or merchant. For each transaction, our objective is
to determine the likelihood of fraud, framing our task as an
edge classification problem in the consumer-merchant graph
and a node classification problem in the transaction relation
graph. This paper explores two detection problems: individual-
level fraud transaction detection and gang-level fraud transac-
tion detection. Essentially, this involves pattern discovery and
classification within graphs, necessitating the identification of
fraudulent entities in transactions.

C. Temporal Features

In real-life transactions, data often includes temporal in-
formation, leading to the abstraction of graph structures and
properties that are not static but evolve over time. This
corresponds to operations such as edge deletion and node
attribute updates in the graph, thus introducing the concept
of dynamic graph embedding.

Many fraudulent activities exhibit temporal dependencies,
where a previous transaction may influence subsequent ones.
At the same time, fraudsters continuously refine their strategies
and tactics to evade detection. By establishing dynamic graphs
considering temporal dimension features through dynamic
graph embedding, we can capture these temporal dependen-
cies, better identify potential fraud patterns, and allow us to
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Fig. 1. A Sankey diagram has been constructed to depict the relationship between the label of whether a transaction is fraudulent and the timestamp on the
Sparkov dataset [43]. On the left side, the labels indicate that the transactions have been classified as normal and fraudulent. Subsequently, these transactions
flow into different time intervals, including years, months, days, and hours. The thickness of the flow paths represents the volume of transactions in specific
time intervals.

continuously adjust our model to adapt to these new fraudulent
behaviors. In other words, we need to find graph representation
learning methods that can learn temporal dimension features
on Continuous Time Dynamic Graphs (CTDGs).

Virtually most transaction datasets contain timestamps and
can be modeled as CTDGs. Take the Sparkov dataset [43] as
an example; it includes 120,000 credit card transactions from
1,000 customers and 800 merchants over six months, with a
fraud transaction ratio of 10.6%. After downsampling the data,
we observe significant differences in the temporal distribution
of normal transactions and fraudulent transactions in the
sankey diagram of Figure 1. For instance, we can distinctly
observe that the distribution of fraud between 21:00 and 5:00
is different from other time periods, therefore, label encoding
was performed based on whether the transaction occurred
within this time frame. Fraudulent transactions increase during
specific months, dates, and hours, possibly indicating that
fraudsters are more active during these periods. This pattern
may be due to fraudsters taking advantage of lax system
monitoring during these times or consumers having weaker
awareness of fraud prevention. Additionally, we study the
temporal dimension features in the dataset using a heatmap and
a violin plot( Figure 4), further demonstrating the necessity of
feature learning from the perspective of temporal dimension
features.

III. METHODOLOGY

We delve into the specifics of our proposed methodology for
detecting fraudulent activities in financial transactions in this
section. The model architecture of the PGLTSE is shown in
Figure 2. We begin by outlining the learning approach within
the heterogeneous entity bipartite graph, emphasizing the
memory module’s role in capturing time dimension features.
Next, we detail the construction of the transaction relation
graph and explain the representation learning process. Finally,
we describe the structure of the detection network and the
optimization strategy that underpins our proposed methods.

A. Local Entity Interaction Graph Learning

In the domain of everyday economic operations, interactions
transpire between two distinct groups: merchants providing
services and consumers procuring them. This interplay forms
a bipartite graph that is instrumental in extracting concealed
insights from the intricate network topology that interlinks
diverse transaction entities, thereby augmenting the embedding
of trade orders. Given that nodes representing both consumers
and merchants undergo analogous phases of information ag-
gregation, our attention is primarily directed toward consumer
entities in this instance to clarify operational procedures. This
strategy ensures the preservation of original data integrity
and facilitates a deeper examination of transaction dynamics,
offering a comprehensive insight into the financial ecosystem.

Initially, we implement the graph attention mechanism to
determine the relevance of features of the locally adjacent
merchant node vmj to the consumer node vci , where vmj and
vmk are members of the neighborhood Nvc

i
. For the hidden

states of nodes at the l-th layer, the attention coefficients are
formulated as:

αl
ij =

exp
(
σ(uT

[
Wch

l−1
c,i ∥Wmhl−1

m,j

]
)
)

∑
vm
k ∈Nvc

i

exp
(
σ(uT

[
Wch

l−1
c,i ∥Wmhl−1

m,k

]
)
) , (1)

where Wc ∈ RdC×dC

and Wm ∈ RdM×dM

are the weight
matrices for consumer and merchant entities, respectively, and
u ∈ RdC+dM

is the weight vector. We choose σ as the
LeakyReLU activation function and use || to denote the
concatenation operation. This setup facilitates the generation
of message representations from neighboring nodes and edges.
Assuming that the edges (transactions) between the two nodes
contain equivalent information, their combined messages are
weighted by node attention coefficients. The set of edge
change events connecting consumer vci and merchant vmj is
denoted by Nij(e

t), with Net

ij representing the number of edge
change events at time t. The message construction phase for
the neighborhood is formulated as:

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3499338

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 04,2025 at 16:14:29 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, JUNE 2024 5

Updated History

History Module

MLP

𝑡𝑖−1

①
②

③ ④

⑤ ⑥

𝑡𝑖

New Events @ 𝑡𝑖 ①
②

③ ④

⑤ ⑥② ④

③ ⑤

② ④

𝑡𝑖

𝑡𝑖

…………

Global Transaction Relation Graph
(Homogeneous)

Node 1/

Node 2/

Node 3/

Node n/

Local Entity Interaction Graph
(Heterogeneous)——Optional

Old History 
Embeddings @ 𝑡𝑖−1

Node 1/

Node 2/

Node 3/

Node n/

New History 
Embeddings @ 𝑡𝑖

𝐹𝑢𝑡𝑢𝑟𝑒

𝑡𝑖 𝑡𝑖−1

𝑃𝑎𝑠𝑡

② ④

𝑡𝑖

𝑡𝑖

New Events @ 𝑡𝑖

…………

𝐹𝑢𝑡𝑢𝑟𝑒𝑃𝑎𝑠𝑡
..

. 𝐻𝑡

`

..
. 𝑍𝑛𝑜𝑑𝑒

𝑧𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟

𝑧𝑚𝑒𝑟𝑐ℎ𝑎𝑛𝑡

𝑧𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

Gang-aware 
Risk Diffusion

Concat

GAT

GAT

Aggregation

×

𝑣𝑖
𝑐

𝑦𝑟,1 𝑦𝑟,𝑁. . .

𝒀𝑹𝒊𝒔𝒌

𝑅𝑐 𝑌𝑟
(𝑘)

Gang-aware Risk Diffusion

Predictor

𝑴𝒊

Downstream Task Module Consumer Embedding𝑧𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟

Fraud Probability

𝐹𝑃𝑐laim,1
𝐹𝑃𝑐𝑙𝑎𝑖𝑚,𝑁. . .𝐹𝑃𝑐laim,2

. . .

Merchant Embedding𝑧𝑚𝑒𝑟𝑐ℎ𝑎𝑛𝑡

Transaction Embedding𝑧𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

History Embedding𝐻𝑡

Node Embedding𝑧𝑛𝑜𝑑𝑒

. . .

𝑴𝒋

𝑴𝒌

𝑪𝒂

𝑪𝒆

𝑪𝒃

𝑪𝒅
𝑴𝒊

𝑴𝒋

𝑴𝒌

𝑪𝒂

𝑪𝒆

𝑪𝒃

𝑪𝒅

𝑪𝒆
𝑴𝒊

𝑪𝒅 𝑴𝒊

𝑦𝑟,2 𝑦𝑟,3

Fig. 2. The model architecture of our proposed Parallel Graph Learning with Temporal Stamp Encoding (PGLTSE) for Fraudulent Transactions Detection
method. It comprises two parallel graph learning components: (a) the Homogeneous Transaction Relation Graph for global context learning, and (b) the
Heterogeneous Entity Interaction Graph for rapidly evolving fraudster behavior’s local context. Both graphs leverage a history module for dynamic graph
learning using temporal stamps. The Gang-aware Risk Diffusion process is embedded in the Homogeneous Transaction Relation Graph. The final Downstream
Task Module performs fraud probability prediction, optimizing for evolving organized fraud patterns.

ml
vc
i←vc

i
= σ

(
W1h

l−1
c,i
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= σ
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k ∈Nvc

i

αl
ik(

1

Net
ik

∑
es∈Nik(et)

W2h
l−1
e,s )

)
,

ml
vc
i←N (vc

i )
= σ

( ∑
vm
k ∈Nvc

i

αl
ikW3h

l−1
m,k

)
, (2)

where ml
vc
i←N (vc

i )
, ml

vc
i←N (et

i)
, ml

vc
i←vc

i
represent the ag-

gregation message from adjacent nodes, edges of vci , and the
hidden state of the node in the last layer, respectively. Trans-
formation matrices W1 ∈ RdC×dC

,W2 ∈ RdC×dE

,W3 ∈
RdC×dM

are employed. We integrate the propagated messages
and formulate the updating paradigm as:

hl
c,i = ml

vc,i←vc,i
+ml

vc,i←N (vc,i)
+ml

vc,i←N (et
c,i)

.
(3)

The method to generate the hidden vector hl
m for mer-

chant nodes is analogous to the approach detailed previously.
Through aggregation sub-layers, the model adeptly transforms
the input features of node entities into advanced representa-
tions, elucidating deep structural connections.

Diverging from conventional graph neural networks, which
are limited to processing nodes, our model also incorporates
a function to update edge attributes, thereby generating trade

order embeddings. These embeddings enrich the model with
high-order data from transaction entities. For ∀et ∈ E , the
hidden states of the transaction and its associated consumer
and merchant from the previous layer l − 1 are denoted as
hl−1
e ,hl−1

C(e),h
l−1
M(e) respectively. The aggregation function is

defined as follows:

hl
e = σ

(
We

[
hl−1
e ||hl−1

C(e)||h
l−1
M(e)

] )
, (4)

where We represents an learnable matrix for updating edges.
In this context, we employ concatenation to integrate mes-
sages, allowing the network to extract more intricate features
from the input spaces and enhance the encoding of local struc-
tural information through stacking multiple graph learning
layers. The ultimately encoded representations for consumers
and merchants are respectively labeled as zc and zm, which
are subsequently utilized in the downstream detection process.

B. Global Transaction Relation Graph Learning

To integrate inter-dependent knowledge specific to each
transaction into our model and assess the global gang-
level risk, we construct a transaction-transaction graph
Gtr(Vtr, Etr). An edge eti,j ∈ Etr is established between nodes
vtri and vtrj within Vtr when they share a common consumer
or merchant. This graph models a gang-level network enabling
the modeling of organized fraud patterns more effectively.
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1) Gang-aware Risk Diffusion: To capture extensive pat-
terns of conspiracy fraud, we introduce a risk diffusion
model within the global transaction relational graph. Using
fraud classification labels of identified nodes as targets, a
label propagation algorithm computes the disseminated risks.
Conventional label propagation (LP) algorithms rely on an
adjacency matrix, only accounting for the 1-hop neighborhood
of the initial node. To address this, we introduce an advanced
gang-aware risk diffusion algorithm, utilizing a risk matrix
(RM) Rtr, expanding upon the original adjacency matrix Atr

of the transaction relation graph.
In a graph structure, the impact of direct information diffu-

sion is the same as multiple indirect diffusion. By accessing
the multi-hop neighborhood of a node v and estimating their
immediate risk diffusion intensity, the diffusion range can be
scaled during the iteration. We select nodes associated with
known gang-related fraudulent transactions from the training
dataset, identified as starting nodes of risk contagion Str.
These nodes serve as source nodes for establishing contagion
links. Starting from these source nodes, a biased random walk
performs a depth-first traversal of their neighborhoods, prop-
agating the risk of organized transaction fraud to surrounding
nodes. Direct connections between source nodes and their
multi-hop neighbors extend the adjacency matrix, denoted as
A

′

tr, recording the original hop distances. For ∀vi, vj ∈ Vtr,
the extended risk matrix is computed as:

Rtr = γA
′

tr + (1− γ)Atr, (5)

where γ is a hyperparameter balancing the effects of multi-hop
neighbors and direct neighborhood. We employ the extended
risk matrix Rtr for multi-hop label propagation, addressing
the deficiency in short-range perception inherent to traditional
label propagation algorithms. During risk contagion, the prop-
agation step is updated iteratively as:

Htr
(t+1) = (1− λ)RtrHtr

(t) + λYtr, (6)

where Ytr denotes the initialized risk labels, Htr
(t) is the risk

propagation vector of nodes in step t, and λ is the teleportation
probability. The convergence of the iterative update results in
the risk vector Htr encoding the node-level risk attributes,
leveraging the global structural features of the transaction
relation graph.

C. Fraud Detection Network

Utilizing node embeddings from local and global perspec-
tives and their respective propagation attributes, we construct
a detection network to assess transaction risks. The locally
encoded consumer and merchant representations zc, zm, and
globally encoded representation Htr undergo concatenation
to form an input vector Xinput:

Xinput = [zc||zm||Htr] . (7)

The fraud detection network, implemented as a multi-layer
perceptron (MLP), maps Xinput to output the probability of
fraud for each transaction, expressed as:

ŷ = σ (Wo ·Xinput + bo) , (8)

where Wo,bo are the weights and biases of the MLP, respec-
tively, and σ denotes the activation function.

D. Model Training and Optimization

To optimize the fraud detection network, we adopt a binary
cross-entropy loss function, given by:

L = − 1

N

N∑
i=1

[yi log (ŷi) + (1− yi) log (1− ŷi)] , (9)

where yi and ŷi are the actual and predicted labels, respec-
tively, for each transaction in the training set. We employ the
Adam optimizer with early stopping criteria to minimize the
loss function and enhance the model’s generalization ability.
The training process iteratively updates the model parameters
until convergence, ensuring robust detection performance.

IV. TEMPORAL GRAPH LEARNING

A. Overview

Fraud detection within financial networks demands an ag-
ile response to evolving transaction patterns. Our approach
involves extending traditional static graph neural networks
to accommodate dynamic scenarios by introducing a History
Module. This advanced module captures the ongoing temporal
changes in nodes and edges, crucial for detecting evolving
fraudulent activities. By integrating temporal dynamics, the
model does not merely analyze discrete events but understands
them as part of a continuum, enhancing prediction accuracy
and sensitivity to new fraud strategies.

B. Temporal Graph Representation

We conceptualize financial transactions as an evolving series
of timestamped events that continuously alter the topology
of a global transaction graph. Each event, whether it is an
edge modification, node update, or both, modifies the graph’s
existing structure, emulating real-world transaction dynamics.
This continuous modification approach helps the model to
grasp complex patterns over time, avoiding the oversimplifi-
cation associated with static or snapshot-based models. The
temporal graph is formalized as G = {x(t1), x(t2), . . .},
where each x(ti) represents a time-specific event influencing
the graph structure, like additions or deletions of edges. At
any given moment t, node representations are captured as
Z(t) = (z1(t), . . . , zn(t)), providing a comprehensive view
of the graph’s state.

C. Node Representation Learning

Node representations are pivotal in understanding the cur-
rent and historical context of transactions. At each timestep
t, the total representation for node i, denoted as zi(t), is
computed by considering both the immediate attributes and the
interconnected past activities of its neighbors. This is achieved
through:

zi(t) = ENC(zi(t), {zj(t− 1)}j∈N (i), hi(t− 1)) (10)

Here, ENC is a sophisticated neural network encoder that inte-
grates the current node attributes zi(t), the previous timestep’s
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embeddings of its neighbors {zj(t−1)}j∈N (i), and the node’s
historical embedding hi(t − 1). This encoding process is
designed to preserve temporal continuity and enrich the node
features with a depth of historical insights, facilitating more
accurate predictions.

D. History Module

The dynamism of financial fraud necessitates a model
that adapts to continuous changes in transaction patterns.
The History Module is engineered to update the historical
embeddings of each node, incorporating new transaction data
while retaining valuable past information. This dual focus on
past and present data ensures robust adaptability and learning
efficacy.

1) Embedding Update Mechanism: Our model employs a
recurrent neural network (RNN) to manage the sequential
update of history embeddings. Specifically, we use a Gated
Recurrent Unit (GRU) as the RNN architecture, which effi-
ciently captures the temporal dependencies in sequential data.
Each node’s embedding is updated iteratively, processing each
transaction event to refine the node’s historical context:

hi(t) = RNN(hi(t− 1), zi(t)) (11)

This GRU-based updating mechanism ensures that new in-
formation is integrated smoothly with existing historical data,
maintaining a continuous timeline of node behavior without
information leakage during graph representation learning.

2) Embedding Utilization for Fraud Detection: The refined
embeddings are crucial for identifying potential fraud:

ŷcij(t) = PRED(zi(t), zj(t), hi(t), hj(t)) (12)

Here, PRED refers to a two-layer perceptron (MLP) that
takes the embeddings as input and predicts the probability of
fraudulent transactions.

L(t) = Loss(ŷcij(t), y
c
ij(t)) (13)

The Loss function used is the binary cross-entropy, which
measures the difference between the predicted probabilities
and the actual labels, providing a robust metric for model
optimization.

E. Batch Interaction and Memory Update

The concluding phase involves updating the History Module
based on batch interactions, which helps reinforce the learned
patterns and prepare the model for future predictions. The
updating process encompasses:

NodeUpdate(hi(t), eij(t)) (14)

Here, NodeUpdate refers to the process where the historical
embedding hi(t) of node i is updated by incorporating the
current interaction eij(t) with node j. This ensures that the
embedding reflects the most recent transaction details.

Aggregate(hi(t), {hj(t)}j∈N (i)) (15)

Potential fraud provider
Normal provider
Medicare beneficiary

Fig. 3. Visualization of the healthcare dataset. This dataset comprises over
500,000 records of medical insurance claims used for identifying and analyz-
ing medical insurance fraud. The visualization of this dataset reveals a certain
degree of gang clustering among transactions, which further underscores the
necessity of detecting fraudulent groups.

Aggregate represents a function that combines the historical
embeddings hj(t) of all neighboring nodes j ∈ N (i). This
aggregation captures the broader network context surrounding
node i, providing a richer representation that considers both
local and global network dynamics.

hi(t+ 1) = MemoryUpdate(hi(t),Aggregate) (16)

MemoryUpdate is the final step where the historical embed-
ding hi(t) is updated to hi(t+1) by integrating the aggregated
information. This step ensures that the node’s memory is
refreshed with the latest network interactions, maintaining an
up-to-date historical context for each node.

V. EXPERIMENTS

A. Datasets

In this study, we selected three datasets from different trans-
action types: healthcare claims fraud (Healthcare dataset [44]),
e-commerce payment fraud (IEEE-CIS dataset [45]), and
credit card fraud (Sparkov dataset [43]). The rationale behind
choosing these datasets is to cover a broad range of financial
transaction scenarios, allowing for a comprehensive evaluation
of the proposed model’s robustness and applicability. To
ensure the model’s efficacy across various real-world financial
transaction scenarios, we conducted detailed statistical analysis
and data preprocessing on each dataset.

The Healthcare dataset comprises over 500,000 records of
medical insurance claims used for identifying and analyzing
medical insurance fraud. We visualized part of the transac-
tions (as shown in Figure 3), revealing a certain degree of
gang clustering among transactions, which further underscores
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(a) Heatmap (b) Violin Plot

Fig. 4. The heatmap and violin Plot of the Sparkov dataset [43]. The vertical axis of the heatmap represents the number of related transactions in each order,
while the horizontal axis represents the months. Each block’s heat value indicates the probability of fraud in the transaction.

the necessity of detecting fraudulent groups. The IEEE-CIS
dataset contains approximately 10.9 million records of e-
commerce payment transactions, encompassing various fraud
patterns. The Sparkov dataset includes about 284,000 records
of credit card transactions, focusing on identifying credit card
fraud. We used heatmaps and violin plots in Figure 4 to better
select features and created Sankey diagrams like Figure 1
based on different timestamps, illustrating the necessity of
incorporating temporal feature extraction.

In the data preprocessing stage, we first filtered all fraudu-
lent records as the positive dataset. Since the number of users
with no unauthorized transactions greatly exceeds the number
of affected users, we downsampled the negative (legitimate)
part to alleviate the imbalance problem. For example, users
maintaining multiple credit cards were combined into one user
ID, and inactive users with fewer than ten records per month
were excluded. We then used user-level downsampling for
normal users, ensuring that for any user with multiple cards, all
cards were either excluded or included in the dataset. Finally,
we encoded categorical data, such as user ID and location
code, into one-hot representations, rounded the time records
to a standard DateTime format (yyyy-MM-dd HH:mm:ss), and
normalized the amount attribute, which typically exhibits a
long-tail distribution. These preprocessing steps ensured the
quality and consistency of the data for subsequent analysis
and modeling.

By analyzing and processing these three datasets, we en-
sured that the proposed model is robust and applicable to
various types of financial transaction data. The following
provides a brief introduction to each dataset:

• Healthcare dataset. This dataset comprises detailed
healthcare claims records from various providers, which
are utilized to detect medical insurance fraud.

• IEEE-CIS dataset. This dataset contains comprehensive
records of e-commerce payment transactions, including
detailed information and fraud labels, used for analyzing
and detecting e-commerce payment fraud.

• Sparkov dataset. This dataset includes credit card trans-
action records, detailing the characteristics and labels of
each transaction, which are instrumental in studying and
identifying credit card fraud.

B. Compared Methods

We employ the following methods as baselines on our
benchmark dataset to highlight the effectiveness of the pro-
posed PGLTSE. In these experiments, the tasks are learned
independently. These baselines include:

• Node2vec [46]. Node2vec is a graph embedding algo-
rithm that effectively generates low-dimensional vector
representations of nodes in a graph. It learns node embed-
dings by optimizing the co-occurrence probability of node
sequences generated by random walks, thus capturing the
structural information of the graph.

• CTDNE [40]. CTDNE is a dynamic network embedding
method that captures the temporal evolution of networks
by modeling event sequences in continuous time. This
allows CTDNE to generate node embeddings in dynamic
graphs, thereby capturing the dynamics of the graph.

• DropEdge [47]. DropEdge is a regularization strategy
for graph neural networks that prevent overfitting by
randomly dropping edges of the graph during training.
This strategy improves the model’s generalization ability,
thereby enhancing the model’s performance on unseen
data.

• GAT [48]. Graph Attention Networks (GAT) is a type
of graph neural network that introduces an attention
mechanism to weigh the contributions of neighbor nodes,
thereby better capturing the structural information of the
graph. This allows GAT to better consider the relation-
ships between nodes when processing graph data.

• GraphSAGE [49]. GraphSAGE is a type of graph neural
network that generates node embeddings by sampling and
aggregating local neighbor information of nodes. This
method allows GraphSAGE to handle large-scale and
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dynamic graphs, making it suitable for various practical
applications.

• DCI [50]. Dynamic Continuous-time Information Net-
work (DCI) is a dynamic graph embedding method
that captures the dynamics of networks by modeling
the continuous-time propagation of information in the
network. This allows DCI to generate node embeddings
in dynamic graphs, thereby capturing the dynamics of the
graph.

• CARE-GNN [39]. CARE-GNN is a graph neural net-
work designed to enhance fraud detection by addressing
the challenges of camouflaged fraudsters. It incorporates
modules to handle feature and relation camouflage, im-
proving the performance of GNNs in detecting fraud in
networks with deceptive behaviors.

• PC-GNN [5]. PC-GNN is a graph neural network that
addresses the class imbalance issue in fraud detection
by using a label-balanced sampler and a neighborhood
sampler to ensure that minority classes are adequately
represented in the model training, improving the model’s
ability to detect fraudulent activities.

• TGAT [42]. Temporal Graph Attention Networks (TGAT)
is a type of dynamic graph neural network that introduces
a temporal attention mechanism to consider the temporal
dependency of node interactions. This allows TGAT to
better consider temporal information when processing
dynamic graphs.

• DyRep [51]. DyRep is a dynamic graph embedding
method that models the structural and temporal evolution
of the graph to predict future edges and times. This allows
DyRep to generate embeddings for nodes and edges in
dynamic graphs, thereby capturing the dynamics of the
graph.

• Jodie [52]. Jodie is a model for predicting future user be-
havior in dynamic user-item interaction graphs. It models
the dynamic embeddings of users and items to capture
the temporal patterns of interactions. This allows Jodie
to better consider temporal information when processing
user-item interaction data.

• TGN [41]. Temporal Graph Networks (TGN) is a type
of dynamic graph neural network that effectively utilizes
temporal dimension features by combining a memory
module and graph-based operators. This allows TGN to
better consider temporal information when processing
dynamic graphs.

• PGLTSE. The full proposed parallel graph learning model
with temporal stamp encoding is presented in this paper.

C. Parameter Settings and Evaluation Metrics

In our implementation, we initially pre-train a two-layer
Graph Convolutional Network (GCN) to generate risk em-
beddings with a dimension of 32. The number of attentional
layers within the entity graph is set to 2, and the dimensions
of the output representations zb, zc, zp are 16, 32, and 16,
respectively. During the parallel training phase, we set the
maximum number of epochs at 100 and employ a dropout rate
of 0.6 to prevent overfitting. Our framework is implemented

using PyTorch 1.12.1 with CUDA 11.3 and Python 3.7 as the
backend. For other components, a two-layer Graph Attention
Network (GAT) is utilized to obtain embedding representa-
tions. The model training is conducted on a server equipped
with two 32GB NVIDIA Tesla V100 GPUs.

In terms of evaluation, we leverage four widely recog-
nized metrics: Area Under the Curve (AUC), Area Under the
Precision-Recall Curve (AUPRC), recall, and F1 score. These
metrics are chosen to comprehensively assess the effectiveness
of our model. The AUC measures the model’s ability to
discriminate between classes at various threshold settings. The
AUPRC is particularly useful for comparisons in datasets with
an imbalanced distribution of classes. Recall focuses on the
model’s ability to identify all positive samples, which is crucial
for fraud detection where missing a fraudulent transaction can
be costly. The F1 score provides a balance between precision
and recall, indicating the overall accuracy and robustness of the
model. For all four metrics, a higher score signifies superior
performance.

D. Overall Performance Comparison

We evaluated the performance of different models for fraud
detection across three datasets: Healthcare, IEEE-CIS, and
Sparkov. The results, summarized in Table I, highlight the
effectiveness of our proposed method, PGLTSE, in comparison
to various state-of-the-art baselines.

The initial part of Table I shows the performance of tra-
ditional models like Node2vec, CTDNE, and DropEdge. For
example, Node2vec’s AUC scores are 0.6543, 0.5629, and
0.6221 on the Healthcare, IEEE-CIS, and Sparkov datasets,
respectively, suggesting its difficulty in capturing intricate
fraud patterns. Advanced models such as GAT, GraphSAGE,
and DCI offer better results but do not match the performance
of PGLTSE. For instance, GAT achieves an AUC of 0.7743
on the Healthcare dataset and 0.7242 on the Sparkov dataset,
indicating the benefits of attention mechanisms. Models like
CARE-GNN and PC-GNN, which are designed to address
challenges such as camouflaged fraudsters and class imbal-
ance, respectively, demonstrate notable performance gains.
CARE-GNN achieves an AUC of 0.6288 on Healthcare, show-
ing its effectiveness in dealing with camouflaged fraudulent
behavior, while PC-GNN records an AUC of 0.768 on the
same dataset, underscoring its ability to handle class imbalance
in fraud detection tasks. However, these models are limited by
their static graph approaches and lack of temporal analysis.
Methods such as DyRep, Jodie, and TGAT, which incorporate
temporal feature learning modules, show further improvements
compared to previous methods, but they still do not outperform
our approach.

Our method, PGLTSE, demonstrates superior performance
compared to other models across the evaluated datasets. No-
tably, PGLTSE achieves the highest AUC scores of 0.8468
on Healthcare, 0.7935 on IEEE-CIS, and 0.7761 on Sparkov.
Furthermore, PGLTSE excels in AUPRC, F1, and Recall
metrics. For instance, on the Healthcare dataset, PGLTSE
records an AUPRC of 0.7574, an F1 score of 0.7712, and
a Recall of 0.8097, outperforming all other models. These
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TABLE I
RESULTS OF THE FRAUD DETECTION EXPERIMENT IN THREE DIFFERENT DATASETS.

Dataset Healthcare IEEE-CIS Sparkov

Model

Metric
AUC AUPRC(AP) F1 Recall AUC AUPRC(AP) F1 Recall AUC AUPRC(AP) F1 Recall

Node2vec 0.6543 0.5528 0.6042 0.5318 0.5629 0.2234 0.1722 0.3479 0.6221 0.4128 0.5351 0.6112

CTDNE 0.7024 0.5953 0.5126 0.3911 0.6024 0.2748 0.3352 0.2688 0.6754 0.5829 0.4988 0.6132

DropEdge 0.693 0.5443 0.622 0.5271 0.7235 0.4074 0.3697 0.2676 0.6214 0.4407 0.5027 0.6425

GAT 0.7743 0.6689 0.7108 0.7558 0.692 0.206 0.3927 0.5968 0.7242 0.5482 0.6027 0.6912

GraphSAGE 0.5283 0.4261 0.4844 0.5274 0.5324 0.1784 0.3216 0.4433 0.6021 0.3224 0.4829 0.4243

DCI 0.7167 0.5686 0.6791 0.7309 0.7183 0.3815 0.493 0.5951 0.7359 0.4428 0.6024 0.6687

CARE-GNN 0.6288 0.4264 0.4844 0.5274 0.6019 0.3419 0.6059 0.5584 0.7627 0.2398 0.5719 0.7148

PC-GNN 0.768 0.4935 0.6226 0.5239 0.7346 0.3122 0.5929 0.5601 0.661 0.1984 0.519 0.5175

TGAT 0.7096 0.601 0.6045 0.7778 0.7282 0.7441 0.6252 0.5482 0.7699 0.5939 0.6623 0.7487

DyRep 0.7189 0.5638 0.5508 0.5386 0.6838 0.6642 0.5662 0.5169 0.5204 0.4052 0.3919 0.3933

Jodie 0.7435 0.6132 0.5251 0.4628 0.6555 0.6111 0.5432 0.5145 0.612 0.5891 0.5841 0.7506

TGN 0.8171 0.7462 0.6818 0.7453 0.7617 0.7891 0.6558 0.5698 0.7447 0.5752 0.6413 0.7331

PGLTSE 0.8468 0.7574 0.7712 0.8097 0.7935 0.8007 0.6843 0.5974 0.7761 0.6003 0.6628 0.7519
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Fig. 5. Ablation experiments on three distinct fraud detection datasets: Healthcare, IEEE-CIS, and Sparkov.

results underscore PGLTSE’s capability to capture complex
and evolving fraud patterns through parallel graph learning
and temporal stamp encoding. The outstanding performance of
PGLTSE across various fraud detection scenarios emphasizes
its robustness and broad applicability in the financial sector.

E. Ablation Studies

To comprehensively evaluate the effectiveness of each com-
ponent in our proposed approach, we conducted ablation
experiments on three datasets: Healthcare, IEEE-CIS Fraud
Detection, and Sparkov. The ablation experiments focus on
three specific components: the heterogeneous local entity
interaction graph learning, the gang-aware risk propagation
algorithm in the homogeneous transaction relation graph, and
the historical information module for time stamp encoding.
Each experiment group compares the full implementation

of PGLTSE against three variants with specific components
removed, including:

• PGLTSE w/o Local Context: Removing the heteroge-
neous local entity interaction graph learning during the
whole parallel graph learning.

• PGLTSE w/o Global Context: Replacing the gang-
aware risk diffusion algorithm in a homogeneous transac-
tion relation graph with the traditional label propagation
algorithm for the pre-training task.

• PGLTSE w/o Time Stamp Encoding: Removing the
history module and replacing it with the normal message
passing and aggregation function algorithm for graph
representation learning.

The results in Figure 5 generally show the best perfor-
mance across all metrics (AUC, AUPRC, F1, Recall) with
the complete PGLTSE model, emphasizing the importance
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Fig. 6. The results of parameter sensitivity experiments in the medical
insurance claims dataset show the impact of the propagation coefficient α
and the initial potential risk ϵ on the detection of organized fraud.

of integrating local and global contexts along with temporal
information. Specifically:

The removal of the local entity interaction graph signifi-
cantly lowered performance across all datasets, especially on
the F1 and Recall metrics, highlighting the critical role of local
transaction information in capturing the complexities and local
characteristics of fraudulent behaviors.

Similarly, the removal of the gang-aware risk diffusion algo-
rithm also led to a decline in performance, particularly on AUC
and AUPRC metrics, underscoring the effectiveness of the
gang-aware risk propagation algorithm in understanding global
patterns of fraudulent behaviors within the entire transaction
network.

Moreover, the removal of the history module adversely
affected all metrics across all datasets, validating the essential
role of the history module in enhancing the model’s accuracy
in capturing transaction temporal pattern embeddings.

By conducting ablation studies across three distinct datasets,
the results demonstrate not only the effectiveness of each
component of PGLTSE but also the model’s robustness and
broad applicability. Whether dealing with medical insurance
claims, e-commerce fraud, or complex financial services fraud,
PGLTSE effectively identifies and predicts fraudulent behav-
iors. The consistency of results across datasets underscores
the importance of adopting graph-based approaches and inte-
grating various contextual and temporal dimensions to adapt
to evolving fraud strategies and complex transaction patterns.
This highlights PGLTSE’s practical applicability and superior
performance in real-world scenarios.

F. Parameter Sensitivity

Take the healthcare transaction Dataset as an example, we
further explore the generalization performance of the model
concerning the hyper-parameters of initial potential risk ϵ
and propagation parameter α. Specifically, we assess their
impact on risk diffusion in organized fraud detection tasks and
present the averaged F1 score of performance on inpatient and
outpatient test data in Figure 6. The initial potential risk ϵ for
normal nodes is varied from 0.05 to 0.25 in increments of

An Organized 
Insurance Fraud Gang

0.0-0.2
0.2-0.4
0.4-0.6
0.6-0.8
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high risk provider
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F

Fig. 7. The structure of a typical medical service provider graph is depicted
below. We have identified six criminal factions, labeled as A, B, C, D, E, and
F. The efficacy of our approach in identifying most organized fraud claims is
demonstrated, with the edge colors representing the likelihood of fraudulent
activity.

0.05, while the propagation coefficient α is selected from the
set {0.1, 0.2, 0.3}. Our results show that PGLTSE performs
better as ϵ increases from 0.05 to 0.15, with the average F1
score peaking when ϵ is 0.15 and α is 0.2. However, the
performance declines when ϵ exceeds 0.15. This decline may
be attributed to the overestimation of risk from legal behavior,
causing the model to become overly sensitive in identifying
fraudulent transactions. Additionally, as α increases from 0.2
to 0.3, performance drops more rapidly, likely because a higher
α limits the diffusion scope, thereby impairing the model’s
ability to learn community-level risk representation.

G. Case Studies

This section presents two case studies demonstrating how
the PGLTSE model addresses critical challenges in fraud
detection: Fraud Gang Detection and Temporal Fraud Pat-
tern Discovery. The model integrates a community-level risk
propagation algorithm that assesses interconnected risks across
organized fraud activities, enhancing the identification of com-
plex fraud schemes. Additionally, it has a history module to
capitalize on transactional history information, enabling the
detection of evolving fraudulent patterns.

1) Fraud Gang Detection: Figure 7 shows a complex
network of 663 medical service providers, illustrating the
intricate relationships facilitated through shared claims with
identical beneficiaries. In this network, connections between
any two providers are denoted by edges whose color and
thickness are indicative of the fraud probability, as assessed
by our method. Providers connected by claims with a higher
likelihood of fraud are categorized as high-risk, while others
are considered low-risk.

PGLTSE has delineated six prominent fraud gangs within
this network, identified as Groups A through F. These factions
are characterized by a pronounced clustering pattern, which
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Fig. 8. Evolution of a transaction network over time, illustrating the
progression of normal and fraudulent consumer behaviors. The image shows
transactions from the Sparkov dataset at four different timestamps: t1, t2, t3,
and t4. Nodes are categorized as merchants (gray), normal consumers (blue),
and fraudulent consumers (red).

our method effectively identifies, underscoring the prevalence
of fraudulent activities within these clusters. Particularly note-
worthy is Group B, highlighted in red squares, where a signif-
icant number of adjacent nodes are implicated in systematic
fraud, forming a conspicuous cluster. This observation affirms
the effectiveness of our community-aware risk diffusion strat-
egy, which is meticulously designed to detect and delineate
such organized fraud schemes.

Further scrutiny of Group B and adjacent areas reveals
that the likelihood of fraudulent claims is intricately linked
to the behaviors of the connected entities. This connection
highlights the necessity of integrating diverse entity informa-
tion to enhance the detection precision. The capability of our
model to synthesize such information allows for more accurate
identification of organized fraud patterns, showcasing its utility
in dissecting and understanding complex fraudulent networks.

2) Temporal Fraud Pattern Discovery: In Figure 8, we
scrutinize the dynamic behavior of consumer transactions
within the Sparkov dataset across four distinct timestamps,
from t1 to t4. The primary objective is to trace how typically
normal consumers transition into fraudulent activities and
to identify the emergence of new fraudulent entities within
the network. This investigation affirms the capability of our
temporal graph learning model to effectively detect and predict

these evolving fraudulent behaviors.
Initially, at t1, the network predominantly exhibits regular

transactional activities, with minimal indications of fraud. As
the timeline progresses to t2, we begin to observe the initial
signs of fraudulent activities. Between t2 and t3, a notewor-
thy shift occurs—nodes that previously engaged in normal
transactions start to participate in fraudulent behaviors. This
transition not only underscores the adaptability of fraudsters,
who initially integrate into the network as benign entities but
also highlights the critical period during which these entities
begin exhibiting fraudulent intentions.

The expansion from t3 to t4 is marked by a significant
proliferation of fraudulent activities, with a substantial increase
in the number of nodes involved in fraud. This phase reveals
that new fraudulent entities, not previously detected at earlier
timestamps, have been introduced into the network. The ob-
servation of these new nodes at t4 suggests that the network
is persistently targeted by incoming fraudsters, reflecting a
continuous threat landscape.

Our model leverages the history module, enhanced with
temporal dimension information, to meticulously map out
these transitions. It excels in identifying not just the consumers
who transition from normal to fraudulent behaviors from one
timestamp to the next, but also in detecting the influx of new
fraudulent consumers into the network. The analytical depth
provided by continuous monitoring of transaction networks
through our model significantly enriches the accuracy of
fraud predictions and facilitates proactive fraud management
strategies. This case study not only validates the effectiveness
of our approach but also illustrates the critical importance of
understanding and adapting to the temporal dynamics of fraud
within transaction networks.

VI. CONCLUSION AND DISCUSSION

The research presented in this paper marks a significant
advancement in the domain of fraud detection within financial
transaction networks. Our proposed model, PGLTSE, inte-
grates parallel graph learning with temporal stamp encoding
to effectively capture the dynamic nature of fraud. By utilizing
a history module and a community-level risk propagation al-
gorithm, the model excels in identifying and predicting fraud-
ulent activities across various transaction types and scenarios.
The experimental results showcase the model’s robustness
and superiority in handling real-world data, outperforming
conventional methods. The ability to dynamically adapt to new
fraud patterns and its high accuracy in recognizing complex
fraud structures make PGLTSE a valuable tool for financial
institutions aiming to safeguard their operations against fraud.
In the future, we plan to enhance the model’s scalability
and deploy it across larger-scale and more diverse datasets.
This will involve refining the model’s architecture to better
handle extensive data and exploring methods to optimize its
performance in large-scale operational environments. These
efforts will further solidify PGLTSE’s role as a critical asset
in the fight against financial fraud.
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