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Scalable Learning-based Community-Preserving
Graph Generation

Sheng Xiang, Chenhao Xu, Dawei Cheng and Ying Zhang

Abstract—Graph generation plays an essential role in under-
standing the formation of complex network structures across
various fields, such as biological and social networks. Recent
studies have shifted towards employing deep learning methods
to grasp the topology of graphs. Yet, most current graph
generators fail to adequately capture the community structure,
which stands out as a critical and distinctive aspect of graphs.
Additionally, these generators are generally limited to smaller
graphs because of their inefficiencies and scaling challenges.
This paper introduces the Community-Preserving Graph Ad-
versarial Network (CPGAN), designed to effectively simulate
graphs. CPGAN leverages graph convolution networks within its
encoder and maintains shared parameters during generation to
encapsulate community structure data and ensure permutation
invariance. We also present the Scalable Community-Preserving
Graph Attention Network (SCPGAN), aimed at enhancing the
scalability of our model. SCPGAN considerably cuts down on
inference and training durations, as well as GPU memory
usage, through the use of an ego-graph sampling approach and
a short-pipeline autoencoder framework. Tests conducted on
six real-world graph datasets reveal that CPGAN manages a
beneficial balance between efficiency and simulation quality when
compared to leading-edge baselines. Moreover, SCPGAN marks
substantial strides in model efficiency and scalability, successfully
increasing the size of generated graphs to the 10 million node
level while maintaining competitive quality, on par with other
advanced learning models.

Index Terms—Graph Generation, Generative Adversarial Net-
work, Graph Neural Network.

I. INTRODUCTION

GRAPHS are widely used in relation modeling in various
fields like social science, information technology, and biology
[1], [2]. However, it is difficult to obtain real-life graphs in
some scenarios due to privacy issues, incomplete observability,
policy restrictions, etc. Therefore, researchers have developed
numerous graph techniques to simulate real-life graphs in
many tasks such as building knowledge graphs and modeling
interactions. For example, synthetic financial networks can be
generated without revealing sensitive information in financial
fraud detection [3]. In addition, graph generation techniques
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contribute to a better understanding of graph structure distri-
butions and other features. For example, graph generators aid
in generating molecules [4], materials [5] and formulass [6],
providing valuable insights into graph data.
Motivation. The study of graph generators has a rich history
across various fields like databases, data mining, and machine
learning [7]. Among the most important of these researches
is general graph generator, which learns a generative model
capturing graph structure distributions in spite of domains.
Unless otherwise stated, the graph generators mean general
graph generators in this paper. In this field, techniques have
evolved into two main streams: traditional graph genera-
tors [8]–[13] and learning-based graph generators [14]–[16].
Traditional approaches produce large-scale graphs efficiently
though predefined rules [8]–[10], yet they fall short in sim-
ulating real-life graphs with high quality, as they tend to be
tailored for specific graph families and lack the ability to learn
directly from real-world graphs. With the development of deep
learning, recent researches tend to simulate real-life graphs
through deep learning techniques such as recurrent neural
network (RNN) [14], [17] and generative adversarial network
(GAN)(GAN) [15], [18]. These sophisticated models have
notably enhanced the quality of graph simulations. However,
they do come with their own set of limitations.
(1) Community-preserving. Because of the complexity of
graph similarity computation problem, it is challenging to
assess the quality of graph simulation directly through sim-
ilarity score between two graph distributions. 1 Therefore,
multiple metrics are employed to quantitatively measure sim-
ilarity of graph distributions from different perspectives, such
as clustering coefficient distribution and degree distribution.
However, community structure, a key and distinctive charac-
teristic of graphs, is often overlooked by many graph gen-
erators. Although generators like Stochastic Block Models
(SBM) [21] (as well as its variants DCSBM [22] MMSB [11]
and SBMGNN [16]), BTER [23] and Chung-Lu model [24]
take community structure into consideration, limited param-
eters restrict them to accurately capture community structure
observed in real-life graphs. The significance of community
structure lies in its ability to preserve the graph’s high-order
structural properties, which are crucial for downstream data
analysis tasks like node classification and link prediction. For
example, communities in actual networks might indicate social

1Note that although measures like graph edit distance [19] and maximum
common subgraph [20] can be used to assess similarity between two graphs,
they lack the ability to establish a bijective relationship between the metric
and the graph distribution. As a result, it is impossible to determine whether
two graphs originate from the same distribution with existing measures.
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groups [25] while in guarantee-loan networks [26], [27], they
might indicate financial institutions groups and dense lend-
ing relationships (cf., Figure 1 for an example). Community
structure helps us understand and leverage networks [28].
Therefore, apart from existing metrics for evaluating graph
simulation quality, the ability to preserve community structure
of real-life graphs should be taken into consideration.

(2) Efficiency. Deep learning approaches to general graph
generative models, unlike traditional methods, often require
significant computational resources (such as GPU memory
usage and time consumption) and are predominantly suited for
small to medium-sized graphs due to their inherent complexity.
Notably, models such as GraphRNN [14], GRAN [29] and
BiGG [30] employ RNNs to construct complete adjacency
matrices, while NetGAN leverages random walks to assem-
ble graphs. These methods generally exhibit a computational
complexity during training and inference of O(b × n2), with
n representing the number of nodes in the graph and b the
number of training epochs. Considering the trade-off between
efficiency and the quality of generated graphs, there is a
pressing need for developing a new deep-learning framework
that effectively balances scalability with the fidelity of graph
simulation.

(3) Scalability. Although learning-based graph generation
methods generate relatively high-quality graphs, they tend to
be less scalable due to the high complexity of the learning-
based models. When generating graphs with millions of nodes,
most of them encounter bottlenecks in inference time, training
time, and GPU memory consumption. For example, through
experiments, as the scale of the original graph grows we found
that most deep learning-based methods (e.g., MMSB [11],
VGAE [31], NetGAN [15]) cannot generate graphs containing
more than 100,000 nodes within a GPU memory limit of
24GB. Even if few methods (e.g., CondGEN-R [18]) limit the
model size to 24GB, their training process consumes extremely
high time cost, and the methods are thus not applicable.
However, real-world application scenarios abound with large-
scale graphs. There is an urgent need to design a deep learning
method with good scalability while guaranteeing the quality
of generated graphs.

Contribution. Modifying deep learning-based graph genera-
tors to maintain community structure of observed graphs is
not straightforward because it’s hard to efficiently integrate
community-preserving feature without compromising simula-
tion quality. Therefore, this paper focuses on developing a
graph generative model that not only better preserves commu-
nity structures but also performs well on efficiency.

Graph simulation tasks have achieved great success
due to recent progress in generative adversarial networks
(GANs) [15], [18], [32] and variational auto-encoders
(VAEs) [16], [33], [34]. We persist in our investigation of
this task and introduce the Community-Preserving Genera-
tive Adversarial Neural Network (CPGAN). This model is
distinguished by its ability to maintain community structures
and provides superior efficiency and scalability relative to
conventional models. The architecture of CPGAN features a
ladder network equipped with graph convolution and pooling

Fig. 1. An illustration of the communities (highlighted with dashed boxes) of
a real-life network. Nodes with the same color belong to the same community

layers, serving as a permutation-invariant encoder for graphs.
For graph generation, CPGAN employs variational inference
techniques on latent distributions. Additionally, its decoder
(generator) uses a fully-connected network combined with a
dot product method for predicting links. The encoder (discrim-
inator) uses graph convolution and pooling layers to evaluate
how effectively the community structure has been captured
from the observed graphs. The main contributions of this paper
are summarized as follows:

• We propose a Community-Preserving Generative Adver-
sarial Network (CPGAN), a novel graph generative model
that not only maintains the community structure and other
key features of real-life graphs but also reach a trade-
off between graph simulation quality and scalability. Fur-
thermore, we introduce Scalable Community-Preserving
Graph Attention Networks (SCPGAN), a short-pipeline
and scalable version of the CPGAN, with similar gener-
ative performance and faster training speed.

• We have developed both generator and discriminator
within a GAN framework. The generator, part of a hierar-
chical graph variational autoencoder, learns permutation-
invariant representations of input graphs and then gen-
erates novel graphs from embeddings. Meanwhile, the
discriminator evaluates if these embeddings originate
from actual or simulated graphs.

• Comprehensive experiments on synthetic and real-world
graphs reveal that our model effectively balances graph
simulation quality and efficiency (scalability) in com-
parison to baseline methods. By experimenting with the
community-preserving graph generation task, it is shown
that SCPGAN performs better in generative quality than
all models except CPGAN. And SCPGAN performs
better than all other learning-based graph generators
(including CPGAN) in scalability. Specifically, SCPGAN
reduces the training time of the original CPGAN model
by 4 times and the memory footprint by 4 times.
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Roadmap. In Section II, we overview the graph generative
models related to this paper. In Section III, We define the
community-preserving problem formally and summarize the
main challenges for community-preserving problem. Subse-
quently, we detail our proposed graph generative methods and
outline their optimization objectives in Sections IV and V.
Comprehensive experimental results for graph generative mod-
els and community-preserving experiments are presented in
Section VI. Section VII make a conclusion of the paper.

II. RELATED WORK

This section provides an overview of two primary areas:
traditional graph generation methods (Section II-A) and deep
graph generative models (Section II-B).

A. Traditional Graph Generation Methods

Graph Generation is one of important task of graph analyt-
ics [35], [36]. Graph generative models have a rich history of
development, with seminal works including those by Erdős
and Rényi [8], Albert and Barabási [9], and Leskovec et
al. [13]. Classical models such as the Barabási-Albert (B-
A) model [9], Chung-Lu model [24], Kronecker graphs [13],
BTER [23], exponential random graphs [37], and stochastic
block models [11] have been meticulously crafted to repli-
cate specific types of graph structures. For example, the
ERGM [37] is a probabilistic framework that determines the
likelihood of edges based on node attributes. Nevertheless,
it primarily captures a limited array of graph statistics. Kro-
necker graphs [13] utilize matrix multiplication to generate
large-scale adjacency matrices, though they face challenges
in representing a variety of graph structures. The BTER
model [23] adjusts for average clustering coefficients and de-
gree distributions through a dual-layer edge sampling method,
also integrating community structures using an enhanced E-
R graph approach. Similarly, SBM [21] and its derivatives,
DCSBM [22] and MMSB [11], account for community struc-
tures; however, their effectiveness is often constrained by their
simplified stochastic approaches. These models typically use
a single parameter to define intra-community connections and
another for inter-community connectivity probabilities.

B. Deep Graph Generative Methods

The landscape of graph generation has been reshaped in
recent years by advancements in deep learning. Notable contri-
butions include VGAE [31], DeepGMG [38], GraphRNN [14],
Graphite [34], GRAN [29], and CondGen [18], which have all
surpassed traditional approaches in terms of performance. Both
Graphite [34] and VGAE [31] utilize variational autoencoders
(VAE) with graph neural networks for the encoding and decod-
ing processes, yet they struggle with handling multiple graphs
as they assume a fixed vertex set. NetGAN [15] addresses
efficiency by adopting graph random walk methodologies,
although it is constrained to producing graphs of constant
size. DeepGMG [38] applies graph neural networks to model
the probabilistic interdependencies between nodes and edges

effectively, capable of learning from any graph structure. How-
ever, generating a graph with m edges and n vertices along-
side a graph diameter Diam(G) results in a computational
complexity of O(mn2Diam(G)). GraphRNN [14] introduces
a sequential approach using recurrent neural networks for
graph generation, but it lacks permutation invariance due to its
dependency on specific node ordering. GRAN [29] enhances
model scalability with an auto-regressive framework that it-
eratively generates nodes and edges, yet it fails to maintain
permutation invariance. CondGen [18] manages to preserve
permutation invariance by incorporating a Graph Convolu-
tional Network (GCN) in its encoding process and handling
generation tasks within an embedding space. Graph U-Net [39]
employs node selection for graph representation through up-
scaling and downscaling techniques, but overlooks community
structure during the learning phase. SBMGNN [16], a variation
of the stochastic block model, utilizes graph neural networks
to estimate parameters for overlapping stochastic blockmodels,
although it doesn’t directly solve issues related to community
preservation, hence mirroring the community preservation per-
formance seen in other deep learning-based graph generative
models. Generative adversarial networks (GANs) [40] have
been increasingly applied in graph-oriented tasks, including
graph embedding [41], [42], semi-supervised learning [43],
privacy preservation [44], and graph generation [14], [18].
It is essential in graph generation to utilize the structural
insights from the dataset, especially for maintaining the
community structures. While some models utilizing pooling
strategies [39], [45] show potential in capturing community
architectures, effectively reproducing these structures remains
a significant challenge.

III. BACKGROUND

This section outlines the fundamental aspects of graph
generation, as described in Section III-A, and explores the
primary challenges associated with generating graphs that
preserve community structures, detailed in Section III-B.

A. Problem Definition

Consider a graph G = (V, E), with V being the set of n
vertices and E ⊆ V × V comprising m edges connecting
pairs of vertices u and v, where each edge e = (u, v) ∈ E.
The representation of graph G also includes an adjacency
matrix A ∈ {1, 0}n×n, reflecting its undirected nature through
symmetry. Additionally, a node-feature matrix X ∈ Rn×d

captures the features of the vertices, where d is the feature
dimension. These symbols are summarized in Table I.

Problem Statement. The objective of graph generative models
is to replicate the structural distribution of a given observed
graph G, allowing the generation of new graphs {G′} that
mimic the structural properties of G.

While aiming for generated graphs to conform to the distri-
bution of the observed graph, proving identical distributions is
challenging due to the complex nature of graph structures [14].
Therefore, our evaluation employs specific metrics, as dis-
cussed in Section VI-A, to measure graph similarity, including
aspects like degree distribution.
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TABLE I
THE SUMMARY OF NOTATIONS.

Notation Definition
G The graph
A Adjacency matrix
X Node features

Zrec The node features reconstructed from
input graph

N (µ, diag(σ2)) The normal distributions
n Total number of vertices
m Total number of edges

E,D The encoder and decoder, respectively
G,D The generator and discriminator, respectively
z(k) The node features of the k-th level’s

community structure

Regardless of the specific model type, significant advance-
ments have been made toward enhancing generation qual-
ity through community structure preservation. For instance,
model-based approaches such as BTER [23] focus on cap-
turing community structure explicitly to improve graph gen-
eration of E-R model. Similarly, learning-based methods like
SBMGNN [16] leverage community-aware embeddings to en-
hance structural fidelity during generation. These approaches
underline the importance of community structure preservation
as a critical aspect of graph generation quality. Further insights
into these evaluation metrics, particularly those pertaining to
community structure preservation, are provided below.

Evaluation of Community Preservation. Our research pri-
oritizes the preservation of community structures present in
the training graphs, which we consider as the baseline truth.
The aim is to ensure that generated graphs replicate these
community structures accurately. The success of this effort is
evaluated using two established metrics: Adjusted Rand Index
(ARI) [46] and Normalized Mutual Information (NMI) [47].
An explanation of these metrics follows.

In the context of a graph with n nodes, initial community
partitioning Yc = {y1, ..., yc} is set. Subsequently, a graph
generated by the model presents a different community parti-
tion Xr = {x1, ..., xr}, challenging the model to preserve the
original community structure.

Assuming there’s a one-to-one node mapping between the
two graphs, the similarity of their community partitions can be
measured by Rand Index (RI), which is formulated as follows:

RI =
TP + TN

TP + FP + FN + TN
, (1)

where TP (true positives) refers to the number of node pairs
that are of the same cluster in both Xr and Yc, while TN
(true negatives) refers to the number of node pairs that are
of different cluster in both Xr and Yc. Similarly, FP (false
positives) and FN (false negatives) refers to the number of
incorrectly grouped node pairs.

However, the Rand Index has a limitation: it generally
scores higher for graphs with fewer communities, as graph
nodes have a greater chance of being randomly assigned to
the same community. We can use the Adjusted Rand Index
(ARI) to modify the likelihood of random community assign-
ments. As illustrated in Figure 2, elements in the contingency

table represent the number of common nodes nij between
two community partitions xi and yj ,ai =

∑c
j=1 nij and

bj =
∑r

i=1 nij . The ARI is calculated by the contingency
table, which is formulated below:

ARI =
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The ARI allows us to quantitatively assess how closely the
community structure of the generated graph matches that of
the real graph. Another metric for community-preserving is
Mutual Information (MI), whose formula is as follows:

MI =
r∑

i=1

c∑
j=1

nij

n
log

nnij

aibj
, (3)

where n represents the number of nodes. Practically, we use
the Normalized Mutual Information (NMI) as our metrics to
scale the results between 0 and 1.

B. Challenges

1) Community Structure Preserved Graph Generation:
Inspired by hierarchical clustering and node representation,
CPGAN and SCPGAN use a graph encoder to capture com-
munity structures at various levels as input to the discriminator.
The output of encoder contains main information of the entire
graph and serves as input to the discriminator. The decoder
uses combined node representations from different community
structure levels as the input, ensuring a more nuanced and
effective graph generation.

2) Permutation-Invariance: A graph with n nodes can
have n! permutations. Without permutation-invariance, differ-
ent permutations might lead to varied graph representations.
To solve it, we design a permutation-invariant architecture,
ensuring that every layer and objective function in our model is
permutation-invariance. Specifically, the encoder and decoder
must satisfy following conditions:

Encoder: E(PAPT ) = E(A),

Decoder: D(G(PZ)) = D(G(Z)),
(4)

where P ∈ {0, 1}n×n represents a permutation matrix, Z
represents the random samples from prior distributions, E
represents the encoder, G represents the generator and D
represents the discriminator.

3) Scalability and Efficiency: The learning-based graph
generative model excels in simulating high-quality graphs but
struggles with efficiency and scalability, making it challenging
to generate large real-world graphs. To address this, a new
deep learning model that balances efficiency (scalability) and
simulation quality is needed. Our approach samples nodes
without replacement to create subgraphs during training, effec-
tively achieving this balance between efficiency and quality.

IV. COMMUNITY-PRESERVING GRAPH GENERATION

In this section, we show our model’s framework and im-
plementation details, and introduce how to design the training
process to reconstruct and generate new graphs.
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𝑦1 𝑦2 ⋅⋅⋅ 𝑦𝑐 Sum

𝑥1 𝑛11 𝑛12 ⋅⋅⋅ 𝑛1𝑐 𝑎1

𝑥2 𝑛21 𝑛22 ⋅⋅⋅ 𝑛2𝑐 𝑎2

𝑥𝑟 𝑛𝑟1 𝑛𝑟2 ⋅⋅⋅ 𝑛𝑟𝑐 𝑎𝑟

Sum 𝑏1 𝑏2 ⋅⋅⋅ 𝑏𝑐

Fig. 2. A contingency table of two community partitions Xr = {x1, . . . , xr}
and Yc = {y1, . . . , yc}. nij denotes the number of nodes assigned to both
community xi and yj . In the last columns and last row, ai and bj denote the
number of nodes assigned to community xi and yj , respectively.

A. Community-Preserving Model Architecture

The CPGAN model is structured around three core compo-
nents: the encoder (E), the decoder/generator (D or G), and
the discriminator (D). The discriminator’s role is to determine
whether a given graph is derived from actual datasets, while
the generator is responsible for decoding community structures
to either recreate existing graphs or create entirely new ones.
During the generation process, samples are decoded from
predefined distributions to produce graphs. For reconstruction,
the encoder’s parameters are shared with both the discrimina-
tor and generator. The objective is to reintroduce the newly
generated graph into the system to deceive the discriminator.

In terms of graph structure, for a given graph G with an
adjacency matrix A and a feature matrix X , its structural
details are encoded using a ladder encoder. If the original
graphs come with verified community labels Yc, obtained
from community detection algorithms (e.g., [48]), these are
used to guide the node community assignments in the matrix
Xr. The discriminator evaluates the authenticity of graphs
by analyzing both the community data and the overall graph
representation. Additionally, community structure information
from the coarsened graphs is relayed back to the original nodes
via a hierarchical message transmission mechanism, aiding in
the reconstruction of graph structures. Node representations
derived from prior distributions are also employed in the
generation of new graphs.

B. Ladder Message Transmission Encoder

Our model features a ladder-shaped encoder which dynami-
cally adjusts the pooling strategy and captures the community
structure details effectively. The encoder inputs are X ∈ Rn×d,
where each node has d features, and an adjacency matrix
A ∈ {0, 1}n×n. Node features X are obtained from the
spectral embeddings of matrix A, denoted as X = X(A), and
initially, X is set to an identity matrix. The model employs
a sequence of convolution and pooling layers to progressively
coarsen the graph.

1) Graph Convolution and Pooling: We progressively
coarsen graphs through a set of assignment matrices S =
{S(l) ∈ Rnl×nl+1 , 1 ≤ l < k}, with nl, nl+1, and k
representing the counts of input nodes, output nodes, and
layers, respectively.

At each layer l, we compute the transmitted messages Z(l)

and the corresponding assignment matrix S(l) as follows:

Z(l) = σ(GCNl,embed(X
(l), A(l))),

S(l) = softmax(GCNl,pool(Z
(l), A(l))),

(5)

where σ is the ReLU activation function. Z(l) ∈ Rnl×dl

represents the matrix of structural features, X(l) ∈ Rnl×dl−1

is the feature matrix for cluster nodes at layer l, and A(l) ∈
Rnl×nl is the adjacency matrix for these nodes. Each GCN
layer is tasked with extracting structural information and
optimizing the pooling strategy. To prevent over-smoothing,
PairNorm [49] is applied post each GCN operation.

Using S(l), we derive the coarsened adjacency matrix
A(l+1) and the updated embeddings X(l+1) as follows:

A(l+1) = S(l)TA(l)S(l),

X(l+1) = S(l)TZ(l),
(6)

This approach enables us to obtain node representations across
multiple hierarchical levels.

2) Graph Readout and Transposed Pooling: The process
for reading out node features involves averaging the features of
the i-th level coarsened graph, calculated as si = 1

ni

∑ni

j=1 xij ,
where xij represents the feature of the j-th node at the i-th
level. The cumulative graph representation s is formulated by
concatenating these averaged features from all levels:

s = s1 ⊕ . . .⊕ sk, (7)

where k denotes the total number of layers. This representation
s serves as the input to the discriminator.

C. Graph Decoder
Following the extraction of node representations by the

encoder, the decoder is utilized to calculate the likelihood of
link formation between nodes. The link generation probability
is defined by the following expressions:

pθ(Aij |hk,i, hk,j) = σ(gθ(hk,i)
T gθ(hk,j)),

pθ(Arec|Zvae) =
n∏

i=1

n∏
j=1

pθ(Aij |hk,i, hk,j),
(8)

where the function gθ, a two-layer Multilayer Perceptron
(MLP), processes community data extracted from the node
features hk,i, representing the i-th node’s characteristics. The
matrix Arec ∈ Rn×n indicates the predicted link probabilities.
For practical training of the decoder on extensive graph
datasets, a subset of nodes ns (where ns ≪ n) is selected
through degree-based sampling to create smaller subgraphs,
simplifying the prediction matrix to Arec ∈ Rns×ns .

D. Opitimination
The target function of CPGAN is calculated as follows,

which is a minimax game with value function V (G,D):

min
ϕG

max
ϕD

V (D,G) =
1

n

n∑
i=1

log(D(Ai))

+ Ep(Zvae)∼q(·|Zrec)log(1−D(G(Zvae)))

+ Ep(Zs)∼N (·|0,I)log(1−D(G(Zs))),
(9)
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Fig. 3. The framework of SCPGAN.

where Zvae is sampled from the approximate distributions,
D(Ai) is the MLP-based discriminator output, and Zs is
sampled from Gaussian prior distributions.

E. Training and Graph Generation

During training, the following steps are performed: (1)
Subgraphs Asub ∈ Rns×ns are sampled from the input graph,
where ns (ns ≪ n) represents the number of sampled nodes.
These subgraphs are encoded into node embeddings using a
graph encoder. (2) The generator takes the node embeddings
as input and produces synthetic adjacency matrices Agen. The
generator is optimized to maximize the discriminator’s error,
ensuring that the generated graphs resemble real ones. (3) The
discriminator is trained to accurately differentiate between real
and synthetic subgraphs by minimizing a binary cross-entropy
loss. This step ensures that the generator receives meaningful
feedback for improving graph generation quality.

After training, we acquire Asub ∈ Rns×ns by sampling ns

nodes and acquire the output matrix Aout ∈ Rn×n which is
acquired from the generator and is verified as a generated adja-
cency matrix by the discriminator. The matrix Aout is initially
empty and is gradually filled with edges from each Asub until
the desired number of edges is reached. Determining each edge
with a threshold and sampling through Bernoulli distributions
parameterized by Aout result in potential exclusion of low-
degree nodes and high-variance outputs, respectively. To miti-
gate them, the following approaches are adopted: (1) For each
node i, an edge is generated by sampling from a categorical
distribution parameterized by the i-th row of Aout. (2) The top-
k entries of Aout are selected repeatedly until the predefined
number of edges is met.

V. SCALABLE COMMUNITY-PRESERVING GRAPH
GENERATION

A. Prelimiaries

Although our proposed approach, CPGAN, is more efficient
and scalable than other learning-based methods, it cannot
generate very large graphs, such as those with 10M nodes. This
limitation stems from the reliance of deep learning methods on
GPU memory, which is smaller than CPU memory capacities.
In contrast, large graphs can be more readily produced using
traditional methods such as BTER [23] and ER [8]. For
example, CPGAN requires that the entire graph fit within
the GPU’s memory for simulation, constraining its scalabil-
ity. Nevertheless, CPGAN manages to process medium-sized

graphs, up to 1M nodes, by decoding sub-graphs incrementally
during each training iteration. Yet, this approach becomes
impractical for graph sizes approaching 10M nodes due to
the significant increase in memory demand.

B. Short-Pipeline Autoencoder Architecture.

To reduce parameters and computation costs, we drop the hi-
erarchical ladder encoder and discriminator. Then, we keep the
core encoder-decoder part: which composes the autoencoder-
based framework of SCPGAN. In Figure 3, SCPGAN consists
of three parts: graph attention encoder, community decoder,
and graph decoder.

To avoid the whole graph computation in GCN [50], we
leverage graph attention networks to measure the edge impor-
tance in the sampled local structure. Specifically, given input
node features Hin ∈ Rn×din and ego graphs, we obtain the
hidden variables hu of the center node u of the associated ego-
graph through leveraging the multi-head attention mechanism
to aggregate messages from graph structures, where denc
denotes the dimension of hidden variables after the encoding
process. For each ego-graph, the message aggregating is
formulated as follows:

hu =GATenc(X|Ṽego(u), Ẽego(u))

=Concat(Head1, ...,Headhattn
)Wo

(10)

where hu ∈ R1×datt denotes one row of hidden variables
of the encoding layer, i.e., hidden variables on node u, and
Wo ∈ Rhattndin×datt denotes the output projection matrix,
hattn denotes the number of attention heads, datt is the
dimension of the attention vector a, and each head of graph
attention layer Headi ∈ R1×datt is formulated as follows:

Headi = σ(
∑

v∈N(u)

αi
u,vhu) (11)

where σ denotes the activation function, N(u) denotes the
neighbor nodes of node u, and αi

u,v denotes the importance
of edge (u, v) in i-th head, which is formulated as follows:

αi
u,v =

exp(LeakyReLU(aTi [hu||hv]))∑
k∈N(v) exp(LeakyReLU(aTi [hk||hv]))

(12)

where ai ∈ R2din denotes the attention vector of the i-
th attention head, and LeakyReLU denotes the non-linear
activation function with a negative input slope α = 0.2.

Inspired by [51], we use the community labels to navigate
the latent variables into community-preserving latent space.
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Besides, to avoid O(n2) computation in the graph decoder,
we drop the inner-product decoder. Then, we use a linear
decoder to obtain the score of each edge. The two decoders
are formulated as follows:

S̄ =softmax(H×Wcom + bcom)

Ā =softmax(H×Wdec + bdec)
(13)

where S̄ denotes the predicted community assignment prob-
ability matrix, and Ā denotes the predicted edge probability
matrix. In practice, the ground truth community labels of the
nodes are calculated by the louvain [48] community detection
algorithm. After generating the community labels of sampled
nodes, we calculate the cross entropy loss from the ground
truth community labels and update the community decoder
and encoder parameters. Then, we generate the adjacency
vectors for the sampled nodes and calculate the approximate
loss from the real graph’s adjacency matrix. The approximate
loss function is formulated as follows:

LSCPGAN = − 1

ns
(
∑
u∈Ṽs

Au log(Āu)+∑
u∈Ṽs

Y u
c log(S̄u)

(14)

where Ṽs denotes the set of sampled center nodes, ns denotes
the size of Ṽs, Ā ∈ Rns×n denotes the score matrix from
the graph decoder, Yc denotes the ground truth community
labels. By adjusting the value of ns, we can achieve the trade-
off between generating high-quality temporal graphs and fast
model training. Assuming that we have sampled ns nodes for
model training (the details of sampling strategy is introduced
in SecV-C), our proposed autoencoder architecture has a space
complexity O(n×(ns+din)) and has O( n

ns
) time complexity

for each training iteration.

C. Scalable Graph Sampling

To achieve a scalable graph generation and maintain the
model’s generative performance, we decompose the complete
graph into numerous ego-graphs. And we achieve an ap-
proximation to the full-graph generation task by running our
SCPGAN core architecture multiple times on the ego-graphs.
Specifically, we first select representative nodes in a training
epoch to model a complete graph structure. Nodes with higher
degrees have a lower probability of being associated with
outlier points. Therefore, to focus on representative nodes and
edges and generate a high-quality graph, we use the probability
distribution based on node degree as the initial node sampling
strategy, which is formulated as follows:

P (u) =
degu∑

v∈Ṽ degv
(15)

where degu denotes the degree of node u. Assuming that in
each epoch, we sample ns nodes as initial temporal nodes, we
sample ns ego-graphs as the input of our encoding process.
The set of initial nodes is represented as Ṽs.

To reduce the time consumption of the encoding process, as
illustrated in Figure 4 (a), we compute node representations
on multiple ego-graphs for parallel node encoding to reduce

Algorithm 1: Sampling k-Radius Ego-Graph

1 Function NodeSampling(nodeset, threshold)
2 Nodes← ∅; i, u← 0;
3 if length(nodeset)≤ threshold then
4 return nodeset;
5 else
6 foreach i ∈ 1 : threshold do
7 u← random.choice(nodeset);
8 Nodes.insert(u);

9 return Nodes;

10 Function k-EgoGraph(G̃, v, k, th)
11 ego, nodeset ← ∅;
12 if k ̸= 1 then
13 nodeset ← NodeSampling(N(v), th);
14 foreach ut ∈ nodeset do
15 ego ← k-EgoGraph(G̃, u, k − 1);
16 nodeset.insert(ego.nodes);

17 ego ← G̃.subgraph(nodeset);
18 return ego;
19 else
20 nodeset ← NodeSampling(N(v), th);
21 ego ← G̃.subgraph(nodeset);
22 return ego;

23 Function EgoGraphDataLoader(G̃, X, k)
24 EgoGraphs, Nodefeatures ← ∅;
25 ego, nodefeat ← ∅;
26 foreach v ∈ 1 : n do
27 ego ← k-EgoGraph(G̃, vi, k);
28 EgoGraphs.insert(ego);
29 nodefeat ← X(ego.nodes, :);
30 Nodefeatures.insert(nodefeat);

31 return EgoGraphs, NodeFeatures

computation steps from O(n) to O(nb ), where b denotes the
parallel number of temporal ego-graphs, i.e., batch size. For
efficient training, we set the batch size as the size of initial
sampled center node set with b = |Ṽs| = ns. Therefore, the
computation step is parallelized into O( n

ns
).

To further reduce the GPU memory space consumption, we
use a truncation mechanism to control space usage and ignore
repeated nodes when sampling nodes with replacement. As
shown in Algorithm 31, we use th as the threshold to control
the worst-case space requirement. Once a node’s total number
of neighbors exceeds th, the algorithm converts from all
neighbor sampling strategy to th-neighbor sampling strategy.

To avoid repeated computation on high-degree nodes, after
ego-graph sampling, as illustrated in Figure 4 (b), we merge
all the ego-graphs into k-bipartite computation graphs. And we
conduct message passing and edge importance computation on
these computation graphs concurrently. As our sampled ego-
graphs compose the representative structure of the observed
overall graph, merging ego-graphs into bipartite computation
graphs makes our graph attention networks able to efficiently
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and effectively encode local structure representations.

D. Data Parallelism and Model Parallelism

We can easily run out of GPU memory when training on
large graphs with more than one million nodes. Therefore, it
is necessary to perform data-parallel training on multi-GPU
machines. Suppose we have a dual-GPU machine. According
to Figure 4 (c), we put the model parameters and the sampled
ego-graphs into two GPUs, respectively. In the two GPUs, we
assemble the respective ego-graphs into bipartite computation
graphs. Then we calculate the representation of the center
nodes, the predicted score matrices, and the gradient value
of the parameter to be updated. Our ego-graph merging and
encoder-decoder modules can be done completely in parallel.
Only when there is a significant difference in the training
time of the two GPUs will there be serial dependencies on
updating embeddings of some nodes. For example, in Figure 4
(c), three node embeddings need to synchronize between two
GPUs. According to our self-graph sampling strategy, we can
limit the number of our embeddings below O(tk), where
k is the sampled ego-graph depth and t is the size of the
truncation value (i.e., threshold th in Algorithm 31), so the
communication cost is controllable. With this data parallelism
strategy, our SCPGAN has an upper bound of 2 billion nodes
(i.e., 231 − 1 nodes), which is far more than other learning-
based methods.

We recommend using model parallelism if we need to
generate huge graphs with more than 231 nodes. Specifically,
we divide the model into c copies and split the training data
into multiple chunks. Each chunk contains less than 231 nodes.
Then we train the model on multiple clusters of machines.
In this case, assuming that the depth of the self-graph we
sample is 1, the time complexity of communication between
machines is less than O(t), where t is the truncation value in
Algorithm 31, which has a manageable communication cost.

TABLE II
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

#Nodes #Edges #Comm. dmean CPL GINI PWE

Citeseer [52] 3,327 4,732 473 2.845 5.939 0.677 2.876
PubMed [52] 19,717 44,338 2,488 4.497 6.337 0.884 1.474
PPI [53] 2,361 6,646 371 5.820 4.376 0.743 1.903
3D Point
Cloud [54] 5,037 10,886 1,577 4.322 32.40 0.828 1.928

Facebook [55] 50,515 819,090 8,010 32.43 14.41 0.716 1.503
Google [56] 875,713 4,322,051 9,863 9.871 6.378 0.673 1.825

E. Remarks and Discussions

As a solution, SCPGAN introduces a more scalable tech-
nique that extends beyond single-GPU limitations by utilizing
multi-GPU, CPU memory, and even hard disk storage. Specif-
ically, we (1) design an efficient graph autoencoder optimizing
objectives for community-preserving graph generation; and
(2) adopted an ego-graph sampling and bipartite computation
graph assembling strategy, achieving a minibatch-based ap-
proach to train the graph generator; and (3) propose a data
parallelism and a model parallelism architecture for scalable
graph generative model training and inference.

VI. EXPERIMENTS

We conduct thorough experiments to confirm the effec-
tiveness of our methods. Initially, we detail the experimental
setup. Subsequently, we demonstrate the performance of our
model in generating realistic graphs and preserving community
structure in comparison with state-of-the-art baselines. Finally,
we assess efficiency and memory usage of the model.

A. Experiment Settings

Datasets. We experiment with six representative datasets
in the literature including two citation networks (Citeseer
and PubMed) [52]2, PPI [53]3, 3D point cloud [54],4 Face-
book [55],5 and Google web pages [56].6 These datasets
encompass various domains and exhibit diverse community
structures. Table II displays the graph statistics of datasets,
with “#Comm.” indicating the number of communities. De-
tailed information of each dataset is shown as follows:

• Citation Networks. Citeseer and PubMed, two repre-
sentative citation networks, comprises 3,327 and 19,717
publications, and 4,732 and 44,338 citations, respectively.
Node refer to publication and edges refer to the citation
relationships.

• PPI. The Protein-Protein Interaction (PPI) network is
composed of 2,361 nodes and 6,646 edges. Each node
refers to a yeast protein and each edge refers to interac-
tions between two proteins.

• 3D Point Cloud. The dataset has 5,037 nodes and
10,886 edges. Nodes refer to household objects and edges
are generated for k-nearest neighbors, measured by the
Euclidean distance of points in 3D space.

2https://linqs.soe.ucsc.edu/data
3http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
4http://www.first-mm.eu/data.html
5https://snap.stanford.edu/data/gemsec-Facebook.html
6https://snap.stanford.edu/data/web-Google.html
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TABLE III
PERFORMANCE EVALUATION OF COMPARED MODELS FOR GRAPH COMMUNITY STRUCTURE PRESERVING TASKS IN EACH DATASET. NMI AND ARI

MEASURE THE SIMILARITY IN COMMUNITY STRUCTURES BETWEEN THE GENERATED GRAPH AND THE REAL GRAPH, WHERE THE HIGHER IS BETTER.

Graph Citeseer [52] PubMed [52] PPI [53] 3D Point Cloud [54] Facebook [55] Google [56]

NMI(%) ARI(%) NMI(%) ARI(%) NMI(%) ARI(%) NMI(%) ARI(%) NMI(%) ARI(%) NMI(%) ARI(%)

SBM [21] 19.7±0.9 1.9±0.1 4.4±0.2 0.3±0.1 11.3±0.7 1.2±0.1 37.0±1.3 11.4±0.7 14.5±2.0 2.1±0.3 24.4±0.9 1.3±0.4
DCSBM [22] 27.1±0.8 1.7±0.1 18.9±0.2 0.3±0.1 18.6±0.8 1.8±0.3 37.3±1.4 11.5±0.8 17.5±1.5 1.9±0.3 29.4±0.6 5.7±0.5
BTER [23] 27.3±0.7 1.8±0.1 19.1±0.2 0.3±0.1 19.0±0.7 1.7±0.1 38.1±1.2 12.1±0.8 17.9±1.2 2.1±0.2 30.3±0.7 5.8±0.5
MMSB [11] 26.7±0.9 4.4±1.0 OOM OOM 15.4±0.6 0.8±0.4 7.1±0.4 1.3±0.3 OOM OOM OOM OOM

VGAE [31] 63.0±0.4 29.0±1.5 42.0±0.3 15.0±0.4 50.4±0.6 40.0±1.2 57.0±0.8 8.2±1.1 OOM OOM OOM OOM
Graphite [34] 62.8±0.7 28.2±2.1 43.0±0.5 15.1±0.4 52.3±0.8 33.4±1.9 58.8±0.4 13.2±0.3 OOM OOM OOM OOM
SBMGNN [16] 62.6±0.5 21.5±1.0 39.3±0.5 14.1±0.5 56.9±0.4 31.0±1.6 59.2±0.9 15.9±1.1 OOM OOM OOM OOM
NetGAN [15] 57.9±0.5 20.1±0.3 OOM OOM 55.2±0.5 30.2±0.3 67.4±0.9 37.8±2.6 OOM OOM OOM OOM

CPGAN 72.5±0.4 44.3±1.5 45.8±0.9 34.1±1.1 57.0±0.7 44.2±1.3 70.6±0.6 39.9±1.4 54.7±1.0 28.4±1.6 38.7±0.5 30.8±0.5
SCPGAN 70.3±0.4 42.1±1.2 43.2±0.8 33.1±1.0 58.0±0.8 43.2±1.1 67.6±0.7 37.7±1.2 52.3±0.8 27.2±1.1 36.3±0.6 21.9±0.9

• Facebook. The dataset is a social network with 50,515
nodes and 819,090 edges. Nodes refer to users and edges
refer to mutual likes among users.

• Google. The dataset is a web graph with 875,713 nodes
and 4,322,051 edges. Node refer to web pages and edges
refer to hyperlinks among them.

Compared Methods. We evaluate our method against tradi-
tional models and deep graph generative models. All baseline
models learn features from a set of graphs and generate
novel graphs. Traditional baselines encompass E-R [8], B-
A [9], Chung-Lu [24], SBM [21], DCSBM [22], BTER [23],
Kronecker [13], and MMSB [11]. Learning-based genera-
tive baselines encompass VGAE [31], Graphite [34], SB-
MGNN [16], GraphRNN-S [14], NetGAN [15], and CondGen-
R [18]. It’s worth noting that we opt for the scalable variants of
GraphRNN and CondGen as baselines. We propose CPGAN
and SCPGAN graph generative models in this paper.

Parameter Settings and Evaluation Metrics. In the ex-
periments, algorithms and evaluating scripts are implemented
with Python-3.6, PyTorch-1.8.1, CUDA-11.1, and GCC-4.8.5.
The experiments are conducted on a machine equipped with
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 80 GB RAM
and NVIDIA RTX 3090 with 24 GB memory and 10496 cuda
cores. Each algorithm utilizes one CPU core and one GPU.
Learning-based graph generation algorithms generally exhibit
O(n2) complexity in both time and space While some methods
reduce complexity using random walks, achieving high-quality
generation often requires sampling a massive number of ran-
dom walks, which can make the effective training complexity
exceed O(n2). In contrast, SCPGAN significantly reduces
the complexity through ego-graph sampling and mini-batch
training. Specifically, the time complexity for SCPGAN during
training and prediction is O(n/b), where b is the batch size,
and the space complexity is O(n · b). These complexities are
substantially lower than traditional learning-based methods,
making SCPGAN highly efficient and scalable. For practical
implementation, we recommend setting the batch size to 32
for single-GPU systems to balance memory usage and training
efficiency. For multi-GPU systems, the batch size can be
increased proportionally to the available memory and compu-
tational power. During the experiment, the graph convolution
hidden size of the ladder message transmission encoder is

configured as 128. The learning rate and the graph pooling size
is configured as 0.001 and 128 respectively. For SCPGAN,
the batch size is configured as 32. For baseline models, we
adhere to original hyperparameter settings. To measure the
performance, we utilize various benchmark metrics as follows:

Deg.: Maximum Mean Discrepancy (MMD) of degree dis-
tribution, indicating the distinction of degree distributions
between generated graphs and real graphs.

Clus.: MMD of clustering coefficient distribution, indicating
the distinction of clustering coefficient distributions between
generated graphs and real graphs.

CPL: The variance in characteristic path length between
generated graphs and real graphs.

GINI: The distinction of GINI index, a common measure of
inequality in a degree distribution between generated graphs
and real graphs.

PWE: The distinction of power-law exponent between gener-
ated graphs and real graphs.

NMI and ARI: To assess the preservation of community
structures, we compare the similarity of community struc-
ture in both observed and generated graphs. We utilize the
louvain [48] community detection algorithm to make an
evaluation. Assuming that graphs with identical community
structures should yield similar detection outcomes, we employ
Normalized Mutual Information (NMI) and Adjusted Rand In-
dex (ARI), widely-recognized clustering metrics,7 to measure
community structures of generated graphs quantitatively.

B. Graph Generation

In our research, we experiment on various aspects including
community structure preservation, generative distribution dis-
tance, and parameter sensitivity. We do representative experi-
ments to demonstrate the effectiveness of our novel CPGAN
and SCPGAN in graph generation. Due to constraints in page
length, we omit certain experiments with analogous results.

Preserving Community Structure. In our experiment, we
utilize the louvain [48] community detection algorithm to as-
sess the preservation of community structure of the generated

7https://scikit-learn.org/stable/modules/classes.html#clustering-metrics



IEEE TRANSACTIONS ON BIG DATA 10

TABLE IV
PERFORMANCE EVALUATION OF COMPARED MODELS FOR GRAPH GENERATION TASKS. THE NUMBERS IN THE TABLE REPRESENT THE ABSOLUTE

DIFFERENCES FROM TRUE MEASURES, WHERE THE LOWER IS BETTER.

Graph Citeseer [52] 3D Point Cloud [54] Google [56]

Deg. Clus. CPL GINI PWE Deg. Clus. CPL GINI PWE Deg. Clus. CPL GINI PWE

E-R [8] 1.27e-2 1.71e-2 17.5 8.86e-2 0.12 0.349 2 25.6 0.237 13.6 6.24e-2 1.36 13.17 3.99e-2 0.221
B-A [9] 1.40e-2 1.25e-2 19.4 0.159 1.43 0.546 2 27.7 0.331 12.2 1.94e-2 1.36 11.1 6.16e-2 0.54
Chung-Lu [24] 1.47e-2 1.73e-2 18.5 9.83e-2 0.15 0.353 2 25.7 0.222 13.7 6.48e-2 1.29 13.32 7.31e-2 0.624
SBM [21] 1.36e-2 4.94e-3 12.4 7.87e-2 5.13e-2 0.317 1.99 23.4 0.209 13.8 0.111 0.886 6.93 0.113 0.892
DCSBM [22] 2.40e-2 3.44e-3 13.3 0.142 8.14e-2 0.309 1.98 23.4 0.218 13.8 8.48e-2 0.865 11.8 9.17e-2 0.595
BTER [23] 1.21e-2 2.71e-3 13.1 7.73e-2 3.03e-2 0.301 2 22.6 0.207 13.6 1.85e-2 0.834 6.67 3.93e-2 0.210
Kronecker [13] 2.58e-2 1.91e-2 18.5 0.132 3.12e-2 0.370 2 26.8 0.240 13.8 0.102 1.28 15.1 5.19e-2 1.2
MMSB [11] 2.98e-2 1.84e-2 17.9 0.173 0.186 0.339 2 25.9 0.234 13.7 OOM OOM OOM OOM OOM

VGAE [31] 0.123 3.78e-2 18.2 0.477 0.126 0.731 1.96 30 0.864 13.8 OOM OOM OOM OOM OOM
GraphRNN-S [14] 1.34e-3 1.48e-3 17.3 7.32e-2 0.176 OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
CondGen-R [18] 8.42e-2 0.14 20.8 0.362 0.295 0.604 1.73 30.4 0.658 14.1 OOM OOM OOM OOM OOM
NetGAN [15] 1.07e-3 1.51e-3 16.5 0.136 0.154 0.415 1.72 26.3 0.542 14.6 OOM OOM OOM OOM OOM

CPGAN 1.25e-3 2.26e-3 15.3 7.23e-2 9.32e-2 0.410 1.49 18.1 0.355 10.8 1.47e-2 0.672 6.45 3.43e-2 0.118
SCPGAN 2.37e-3 4.65e-3 15.8 0.102 0.129 0.601 1.83 24.3 0.593 13.6 0.321 0.882 15.9 0.101 1.03

TABLE V
PERFORMANCE COMPARISON FOR GRAPH RECONSTRUCTION TASKS IN THE PPI AND CITESEER DATASETS.

Graph PPI [53] Citeseer [52]

Deg. Clus. CPL GINI PWE Train NLL Test NLL Deg. Clus. CPL GINI PWE Train NLL Test NLL

VGAE [31] 0.257 1.69 6.11 0.342 0.633 1.96 3.61 9.01e-2 1.6 1.45 0.263 0.149 2.26 3.78
Graphite [34] 0.315 0.815 10.9 0.362 0.760 2.09 4.38 0.306 1.53 2.14 0.311 1.17 2.41 4.15
SBMGNN [16] 0.356 1.61 10.9 0.397 0.777 2.20 4.00 0.217 1.32 2.14 0.358 0.517 2.31 4.26
CondGen [18] 0.139 1.16 12.8 0.231 1.09 2.07 3.82 0.166 1.13 3.57 0.196 1.54 2.47 3.97

CPGAN 6.21e-2 0.243 11.31 7.43e-2 0.437 1.84 3.52 8.49e-2 0.498 1.35 1.38e-2 3.16e-2 1.78 3.68
SCPGAN 8.78e-2 0.647 11.56 7.32e-2 0.476 2.12 4.19 9.22e-2 0.511 1.04 2.29e-2 1.39 2.52 3.87

graphs. This involves measuring the similarity of the commu-
nity detection outcomes between the original and generated
graphs. Table III presents the effectiveness of various methods
in maintaining community structure, a primary objective of
this study. We excluded certain baseline methods as they lack
node permutation invariance. Additionally, a few algorithms
are unable to simulate certain graphs because of memory
limitations, and these results are indicated as ”OOM” (Out
of Memory) in the table.

The first 8 rows represent outcomes of baseline methods.
Notably, CPGAN performs best overall, especially in ARI
evaluation. Although BTER performs best among traditional
baselines, it is uncompetitive with learning-based models. As
mentioned in Section II-B, SBMGNN doesn’t use deep neural
network to preserve community structure, thus uncompetitive
with other learning-based models.

Generative Distribution Distance. Table IV displays the
efficacy of different graph generation methods. Each metric
used highlights the differences between the graphs generated
by these methods and actual graphs. The initial 12 rows
summarize the results from baseline methods. From the first
six rows in the table, it is evident that BTER outperforms other
traditional graph generators. Compared to its peers, CPGAN
not only excels in maintaining community structures but also
ranks highly in other quality metrics, particularly for larger
graphs. For graphs of considerable size, such as those in the 3D
Point Cloud and Google datasets, CPGAN shows substantial
enhancements. Specifically, CPGAN achieves one-fifth of the

top scores in Citeseer, three-fifths in 3D Point Cloud, and leads
with the highest scores in the Google dataset. Additionally,
CPGAN secures the top position in both the PubMed and
Facebook datasets. It is notably superior in the 3D Point
Cloud and PPI datasets when compared to competing models.
It is important to mention that for the PubMed, Facebook,
and Google datasets, the complex memory requirements of
traditional learning-based models frequently lead to memory
overflow problems.

TABLE VI
TIME CONSUMPTION (SECONDS) PER GRAPH GENERATION.

#Nodes 0.1k 1k 10k 100k

E-R [8] 4.6e−4 9.0e−3 0.46 10.1
B-A [9] 1.0e−3 1.2e−2 0.11 1.17
Chung-Lu [24] 7.2e−4 2.5e−3 0.18 2.38
SBM [21] 6.1e−3 0.09 2.58 37.1
DCSBM [22] 6.2e−3 0.09 2.69 39.3
BTER [23] 1.28e−3 1.9e−3 0.16 0.25
MMSB [11] 6.1e−3 0.09 2.56 -
Kronecker [13] 8.5e−3 0.08 1.00 9.69
GraphRNN-S [14] 0.27 4.74 63.6 -
VGAE [31] 4.2e−3 0.04 0.38 -
Graphite [34] 6.1e−3 0.06 0.64 -
SBMGNN [16] 0.01 0.11 1.18 -
NetGAN [15] 8.7e−3 0.09 1.12 -
CondGEN-R [18] 8.3e−3 0.15 - -

CPGAN 9.1e−3 0.08 0.95 86.1
SCPGAN 9.4e−3 0.16 1.14 9.07
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TABLE VII
TIME CONSUMPTION (MINUTES) OF THE ENTIRE TRAINING PROCESS.

#Nodes 0.1k 1k 10k 100k

MMSB [11] 0.11 0.91 40.3 -
Kronecker [13] 1.39 1.55 3.25 4.73
GraphRNN-S [14] 1.63 15.4 161 -
VGAE [31] 0.06 0.42 9.75 -
Graphite [34] 0.07 0.47 10.6 -
SBMGNN [16] 0.08 0.63 12.4 -
NetGAN [15] 0.27 2.80 31.1 -
CondGEN-R [18] 0.18 25.3 - -

CPGAN 0.35 0.70 6.39 32.9
SCPGAN 0.01 0.09 0.89 9.37

TABLE VIII
PEAK GPU MEMORY USAGE (MB) DURING TRAINING.

#Nodes 0.1k 1k 10k 100k

MMSB [11] 1575 1709 18529 OOM
GraphRNN-S [14] 1913 1959 5501 OOM
VGAE [31] 1719 1759 4799 OOM
Graphite [34] 1719 1761 4819 OOM
SBMGNN [16] 1719 1767 5243 OOM
NetGAN [15] 2237 2552 5008 OOM
CondGEN-R [18] 1722 1789 - -

CPGAN 1728 1760 2467 7930
SCPGAN 1718 1720 1752 1956

C. Graph Reconstruction

In this research, we conduct experiments using the PPI and
Citeseer datasets. For these tests, 80% of the edges are used for
training while the remaining 20% serve for testing, enabling
the reconstruction of the full graph using the models. We
evaluate the performance of the models based on the negative
log-likelihood (NLL) obtained from the discriminator’s scores,
averaging across both the training and testing datasets. The
results are documented in Table V. The data shows that our
model is highly competitive in the PPI dataset and secures
the top performance in the Citeseer dataset, markedly sur-
passing other models such as VGAE, Graphite, SBMGNN,
and CondGen. These findings align with those from our
graph generation studies, underscoring the robustness of our
approach in graph generation tasks. It is noteworthy that GAN-
based models, including CPGAN, have weak performance in
maintaining CPL on graphs with low CPL values. Specifically,
in the PPI dataset, where the CPL is recorded as 4.38 in
Table II, GAN-based models demonstrate a notable deficiency
in CPL preservation. The reason is that graphs with low CPL
values tend to have dense edges. Dense graphs complicate the
discriminator, compelling the generator of GAN to make more
complicated decisions. This complexity leads to instability of
the the structure of generated dense graph during adversarial
training. As CPL is a sensitive measure for assessing the
structure of generated graphs, GAN-based models tend to
underperform on graphs with lower CPL values.

D. Model Efficiency

This subsection focuses on assessing the efficiency and
scalability of graph generators. Table VI presents the time
comsumption of a novel graph generation, with node counts

ranging from 100 to 100,000. Table VII presents the time
consumption of the entire training process as well as ta-
ble VIII presents the peak memory usage during training. The
results show that traditional graph generators, including BTER,
Chung-Lu, E-R, B-A, SBM, DCSBM, and Kronecker are more
efficient and scalable than learning-based models, particularly
with larger graphs. Among learning-based models, SCPGAN
demonstrates superior efficiency and scalability as graph size
increases. Specifically, SCPGAN and CPGAN are the only
models capable of dealing with graphs with 100K nodes in
Tables VI, VII and VIII. Moreover, SCPGAN is the only
model capable of dealing with graphs with 10M nodes in
Table IX.

E. Evaluation on Scalable Model

For all the experiments above, we supplemented the corre-
sponding results of SCPGAN to evaluate its performance in
all aspects further. The extra findings are as follows:

As shown in Table III, CPGAN achieves the best
community-preserving performance among all graph gener-
ators evaluated. Meanwhile, SCPGAN achieves a second-
best performance compared with CPGAN on preserving com-
munity structure tasks. Besides, SCPGAN still achieves a
better community-preserving performance than other baselines
except CPGAN. Table IV shows the performance of different
methods for aspects other than community-preserving in graph
generation. It is shown that SCPGAN achieves competitive
results in five measurements of the generated graphs on three
datasets. Table V reports the results of graph reconstruction
experiments. We can also find that SCPGAN outperforms all
baseline models in most metrics and even surpasses CPGAN in
individual metrics, with only a minimal quality loss.Efficiency
and scalability are the focus of SCPGAN’s improvements.
Thanks to its autoencoder architecture and parallel ego-graph
training strategy, SCPGAN significantly reduces the training
time and GPU memory usage of CPGAN while ensuring the
quality of the generated graphs, as shown in Table VI, VII,
and VIII.

To further explore the efficiency and scalability of SCP-
GAN, we scale the test data to ten million nodes and observe
the performance of various learning-based graph generators in
terms of training time and GPU memory consumption. Table
IX report the efficiency results of a single machine with one
GPU. It is shown that SCPGAN first scales up the generation
of graphs to 10 million nodes level among the learning-based
methods, according to Table IX.

We also plot the trends of inference time, training time, and
GPU memory consumption with the graph scale for SCPGAN.
As shown in Figure 5, SCPGAN has linear complexity in
terms of time and space consumption as the number of nodes
increases, which confirms its excellent scalability. Besides,
according to the medium part of Figure 5, the training time
complexity exceeds linear when the number of nodes exceeds
107. That is because our experiments are conducted on one
GPU with 10496 cuda cores. According to our data parallelism
strategy, this issue is trivial to address through deploy our
model on multi-gpu machines.
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Fig. 5. Efficiency and scalability of SCPGAN.
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Fig. 6. Parameter sensitivity experiment results. Smaller points are better.

TABLE IX
CPU TIME CONSUMPTION (MINUTES) OF THE ENTIRE TRAINING PROCESS

AND PEAK GPU MEMORY USAGE (MB) DURING TRAINING ON LARGE
GRAPHS.

Nodes 1 Million 10 Million

Time GPU Time GPU

MMSB [11] - OOM - OOM
GraphRNN-S [14] - OOM - OOM
VGAE [31] - OOM - OOM
Graphite [34] - OOM - OOM
SBMGNN [16] - OOM - OOM
NetGAN [15] - OOM - OOM
CondGEN-R [18] - OOM - OOM

CPGAN 1480 23879 - OOM
SCPGAN 208 3774 13802 22104

F. Parameter Sensitivity

To further explore the properties of SCPGAN, we conducted
parameter sensitivity experiments on the citeseer [52] dataset.
According to the sensitivity experiment result, we selected
the best hyper-parameters in our experiment. Figure 6 illus-
trates the maximum mean discrepancy (mmd) of node degree
distribution and clustering coefficient between the generated
and real graphs. SCPGAN performs best when the batch size
is set as 32 because as batch size increases over 32, the
quality of generated graphs decreases rapidly. The increase
in hidden size makes SCPGAN more expressive and improves
the performance of graph generation while increasing the GPU
memory consumption. SCPGAN reaches the best performance
when the hidden size increase to 400. Then the performance
tends to remain as the hidden size increases over 400. Besides,
the learning rate is preferably chosen to be between 0.005
and 0.01 because as the learning rate increases, the quality of

generated graphs tends to increase before the learning rate of
0.005 and then decrease.

VII. CONCLUSION

In this paper, we introduced two deep generative models,
CPGAN and SCPGAN, for simulating real-life graphs. CP-
GAN preserves community structure and other crucial graph
properties. Although it shows superior performance in gener-
ating medium and large graphs compared to deep learning-
based baselines, its efficiency and scalability for graphs over
10 million nodes remain limited. Consequently, we developed
SCPGAN, a scalable variant of CPGAN, employing ego-
graph sampling and data parallelism strategies. This approach
enables training and inference on multiple GPUs and merges
ego-graphs into bipartite computation graphs for efficient and
effective local structure encoding. SCPGAN not only outper-
forms other learning-based methods in terms of efficiency and
scalability as graph sizes increase but also maintains strong
community preservation and competitive overall simulation
quality. It presents the best scalability and a favorable balance
between simulation quality and efficiency among learning-
based graph generative methods.
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