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Abstract. Credit card fraud is a serious problem that causes significant
losses for cardholders and issuing banks. Current detection methods often
focus on spatial-temporal anomalies in transactions but tend to overlook
the disguising techniques of fraudsters. We notice that covert credit card
fraud activities frequently manifest localized clustering characteristics,
which are particularly evident in different subgraph patterns. To address
this, we propose Subgraph Patterns enhanced Graph Neural Network
(SPGNN), a novel approach that effectively harnesses specific traits to
significantly improve fraud detection capabilities. This method employs
subgraph pattern features to more sharply distinguish between fraudu-
lent and legitimate nodes, aiding in the identification of disguised fraud-
sters. In particular, we devise a probabilistic neighbor selector to assist
nodes in selecting more similar minority class nodes, effectively balanc-
ing data distribution and filtering out disguised nodes. Furthermore, we
introduce a reinforcement learning module for supervised similarity mea-
surement, further filtering out disguised fraudsters. Extensive experi-
ments on several benchmark datasets demonstrate that SPGNN sur-
passes state-of-the-art models in detecting fraudulent activities, achiev-
ing the most advanced performance.

Keywords: Graph Neural Networks + Fraud Detection -
Reinforcement Learning * subgraph patterns

1 Introduction

Financial fraud not only damages the financial well-being of individuals and
businesses but also has a significant impact on the broader economy, erodes
trust within the financial system, and disrupts the legal environment of soci-
ety. Credit card fraud detection, a pivotal area of research, involves unautho-
rized fund usage, often via credit or debit cards [1]. Global card fraud losses
are projected to reach $397.40 billion over the next decade [15], highlighting
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its significant impact on financial markets. Various models, from rules-based to
machine learning approaches, have been developed to tackle fraudulent trans-
actions. Deep learning models [4,21], such as graph neural networks (GNNs),
have emerged to capture abnormal patterns as they can identify sophisticated
and covert transactions by analyzing relational graphs, leading to more accurate
fraud detection [23].

However, existing fraudsters engage in various behaviors to disguise them-
selves and evade detection [3,6,7]. These disguising actions include feature dis-
guise and relationship disguise. 1) Feature disguise involves fraudsters mimick-
ing the transaction characteristics of legitimate entities, such as transaction fre-
quency and preferences. 2) Relationship disguise involves engaging with many
legitimate entities to dilute node information and avoiding direct transactions
with other fraudsters to evade detection as part of a fraud ring, which is insidious
as it prevents the aggregation and transmission of valuable information.

Some recent work has noticed similar challenges. PCGNN [11] reduces redun-
dant edges to tackle disguise with benign entities. Liu et al. [12] identify feature-
disguising fraudsters with a score and merge context embeddings. Yu et al.
[19] decompose multi-layered tree subgraphs to alleviate information dilution.
However, while the aforementioned methods address some fraudulent behavior
aspects, they’re inadequate when fraudsters intentionally avoid direct transac-
tions. When fraudulent nodes are amidst benign entities, messages aren’t effec-
tively transmitted, rendering methods ineffective. This underscores a critical
gap in current methodologies, where indirect transactional behaviors are insuf-
ficiently considered, potentially overlooking sophisticated fraudulent activities.

We have noticed that covert credit card fraud activities frequently manifest
localized clustering characteristics, which are particularly evident in different
subgraph patterns. This distinction remains evident even in scenarios where
fraudsters avoid direct transactions. Therefore, we propose Subgraph Patterns
enhanced Graph Neural Network (SPGNN) to effectively tackle the challenge
posed by disguise behaviors. Our method focuses on subgraph patterns, particu-
larly targeting the disguise of avoiding direct transactions. Additionally, we intro-
duce a probabilistic neighbor selector that integrates label distribution and node
similarity to address other disguise issues. We also incorporate a reinforcement
learning (RL) module into the training phase. This module employs a super-
vised similarity metric to further filter disguised fraudsters and guide the adap-
tive exploration of the optimal neighbor threshold. The contributions of this
paper are summarized as follows:

1) To the best of our knowledge, this is the first work that leverages the power
of subgraph patterns, which have the ability to effectively characterize and
discriminate fraudsters to address the challenge of disguised fraudsters in
credit card fraud detection.

2) We designed a probabilistic neighbor selector as the first layer of filtering for
feature disguise and relationship disguise connected to multiple benign enti-
ties. Additionally, we employ an RL module for supervised similarity mea-
surement, further filtering out disguised fraudsters.



Subgraph Patterns Enhanced Graph Neural Network for Fraud Detection 377

3) We conduct extensive experiments to compare our method with state-of-the-
art baselines on both public and real-world datasets. The results demonstrate
that our model significantly improves GNN performance on graphs containing
disguised fraudsters.

2 Preliminaries

2.1 Subgraph Patterns Analysis

Figure 1 visualizes scaled subgraph pattern features, with the left section depict-
ing fraudulent transactions and the right section showing legitimate ones.
Detailed subgraph pattern extraction steps will be described later. Subgraph
patterns of 2-3 nodes are shown on the right, with the central node represented
by X. Neighboring nodes are labeled as 1 for fraudulent and 0 for benign, result-
ing in features like X-0. Statistical analysis found that most triangle subgraph
patterns resulted in zeros for both fraudulent and benign nodes. There are sig-
nificant differences in the color distribution of the feature heatmaps between
fraudulent and benign nodes. In the case of fraudulent transactions, certain sub-
graph pattern features (such as X-0-1) exhibit more pronounced color blocks in
fraud features, indicating that these subgraph pattern feature values are highly
significant in fraudulent activities. We opt for subgraph pattern features of 2-3
nodes (excluding triangle subgraph patterns), denoted as Geup = {G1,G2 - Gn }-
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Fig. 1. Heat maps of subgraph pattern features from both fraudulent and legitimate
transactions. The y-coordinate represents the corresponding subgraph pattern features.
The central node is indicated by X, while neighboring nodes are denoted as 1 for
fraudulent neighbors and 0 for benign neighbors.

2.2 Problem Definition

Definition 1. Transactions. A transaction record r can be defined as an
attribute tuple r = {s, ¢, 2} in the transaction payment process, where s denotes
the transaction initiator, ¢ represents the merchant or receiver, and x means the
characteristic vector of the transaction.

Definition 2. Graph & Subgraph Pattern. A graph is an ordered pair G =
(V,€). V is a set, whose items are called vertices or nodes, and £ is a set of
unordered pairs of vertices. A graph g = (V/, £ /) is a subgraph pattern of the
graph G = (V, £) where V' CV, & CE, and (v1,v2) € E Suv,meV.
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Problem Definition. Given the original transaction records R = {S,7, X'}, we
construct a transaction graph G = (V, X, &, ). Firstly, we treat each transaction
as a discrete node in the graph, V = {v1,---,v,}, € = {0}. Each node v;
has a d-dimensional feature vector ; € R? and X = {x1,--- ,x,} represents
a set of all node features. When the merchants or transaction initiators of two
transactions v;,v; are the same, we add an edge between their corresponding
nodes, E =E&U{e; ;j}. Y ={y1, - ,Un}, ¥i € {0,1} denotes the label of node v;.
If a transaction is reported by a cardholder or identified by financial experts as
fraudulent, we label it as 1; otherwise, it is labeled as 0. For the set of subgraph
patterns Gsup = {G1,Ga - - - Gn }, subgraph pattern feature extraction is performed
to obtain the subgraph pattern features which will be combined with the X to
form a new feature X . We hope to infer the possibility of fraudulent transactions
based G = (V, X', £,)).
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Fig. 2. The illustration of the proposed SPGNN.

3 The Proposed Approaches

3.1 Model Architecture

Figure2 shows the overall architecture of SPGNN. We first generate complex
transaction graphs based on original transaction records. Subsequently, subgraph
pattern feature extraction is performed to obtain the subgraph pattern features,
which are then combined with the original node attribute features. We imple-
ment a probabilistic neighbor selector that takes into account label distribution
and node similarity to improve neighbor selection. This approach focuses on
minority class nodes with high similarity, thereby achieving a balanced data
distribution and effective identification of concealed nodes. Subsequently, these
refined node features are fed into the GNN. Through the integration of multi-
ple neighbor selectors and aggregation layers, the GNN effectively shares and
compiles information across nodes. Simultaneously, the training process of the
GNN serves as the environment for the RL module, in which the RL agent,
incorporating supervised similarity measurement, further filters out disguised
fraudsters.
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3.2 Probabilistic Neighbor Selector and RL Module

We devise a probabilistic neighbor selector to pick more informative nodes to
filter disguised fraudsters. The key idea lies in incorporating label distribution
information and node similarity into the sampling process. For the neighbor
selector, those minority class nodes with high similarity have a higher sampling
probability. The sampling probability of neighbor node u can be defined:

oy = S (v, u) )
“ > vren(w) S (0,0) - DF(v,C(u))’

where v is the central node and N'(v) represents the neighbor set of node v.
DF(v,(C(u))) denotes the label frequency of class C(u) in N'(v). S (v,u) is the
similarity between neighbor node u and the center node v (We set it as cosine
similarity). To refine fraud detection, we integrate an RL module in training. It
learns an adaptive parameter p, acting as a threshold, ensuring nodes aggregate
only with similar neighboring nodes. Inspired by LAGCN [2], we incorporate a
Single-layer Perceptron (SLP) as a new layer before the aggregation layer of
GNN. This SLP predicts node labels based on their embeddings. For a center
node v at the [-th layer and edge (v,v') € &, the distance between v and v’ is
defined as:

Dist® (v,0) = ‘0 (SLPU)(hgf-l))) _p (SLP(“(hff,_l) )) , 2)

where hg,l) is the hidden embedding at the [-th layer of node v, h,(f” = x, is the
input feature, and o is a nonlinear activation function (we use sigmoid). The
similarity measure is defined as:

SimiV (v,v") = 1 — DistV (v,v'). (3)

To optimize computational efficiency, we simplify the input by using only
the node embedding, rather than combined embeddings as in LAGCN [2]. This
reduces the time complexity of the proposed similarity measure from O(|V|Dd)
to O(|V|d). We define the cross-entropy loss of the SLP at the I-th layer as:

O _ _ . (ONENO]
L UEZV log <yv 0<SLP (hv ))), (4)

where ¢ is the sigmoid activation function. We define the RL process as a
Bernoulli Multi-armed Bandit (BMAB) B(A, R,T) between the neighbor selec-
tor and the GNN with the similarity measure. Here, A is the action space, R
is the reward function, and 7' is the terminal condition.

Reward function. Optimal p minimizes distance (or maximizes similarity)
between the central node and its neighbors in the first layer. Binary stochas-
tic reward is based on average distance differences between consecutive epochs.
Average neighbor distances for epoch e are calculated as:

5 v Dist V(0,0

(5)
|Vtrain |

O (Dist)'® =
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denoted as O for simplicity. The reward function for epoch e is defined as:

+1,07D — 0l > g,
al® = { B (6)

—1,0t7) — 0 <.

Action: p adjusts incrementally based on the reward (Eq. (7)), aiming to reduce
neighboring nodes when distance increases.

p=p+a .7 (7)

Terminal: Eq. (8) defines a terminal condition, signifying RL module conver-
gence in recent epochs, identifying an optimal threshold p.

i al®

e—10

< 1, where e > 10. (8)

3.3 Aggregation and Embedding Generation

We choose the mean operator as the aggregator of GNN, represented as:
nd = o (W(“ - MEAN ({hgf—”} U {th—l),Vu € N(v)})) . (9

where the W is the I-th parameter matrix. Following the aggregation step, an
MLP classifier is trained together with GNNs to minimize the cross-entropy loss.

Dy = MLP(hE)L)), (10)

where L is the number of layers. We define the graph-based loss function:
Lo =— Y [yslogp, + (1 —yy)log (1 - p,)] (11)
veEV

Combined with the similarity measure loss, the loss of SPGNN is defined as:

ﬁSPGNN =X »C(l) + »anna (12)

Simi

where A is a weighting parameter.

4 Experiments

4.1 Experiments Settings

Datasets. We collected real-world credit card transaction data from a major
commercial bank spanning January 1 to December 31, 2021. The dataset,
referred to as CCDS (Credit Card Fraud Detection DataSet), consists of
140,576 transactions involving 20,313 unique users. Transaction features include
location, amount, and type. Additionally, we utilized two public datasets for
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experiments: the YelpChi graph dataset containing hotel and restaurant reviews
and the Amazon graph dataset comprising product reviews of musical instru-
ments. Basic statistics for the datasets are summarized in Table 2.

Compared Methods and Settings. We compare SPGNN with the baselines:
GCN [8], GEM [10], GAT [16], FdGars [18], Play2Vec [20], GeniePath [13],
Graphconsis [12], SEMIGNN [17], CAREGNN [5], PCGNN [11]. Sub-models of
SPGNN are SPGNN-nosample/nosubgragh/noRL, in which probabilistic neigh-
bor selector, subgraph pattern features, or RL module are not used. SPGNN
is the full proposed model. Baseline methods utilize their originally proposed
optimal parameters. SPGNN employs a two-layer aggregation scheme with an
embedding size of 64. We use a learning rate of 0.01 and an RL step size of 0.01.
Evaluation includes AUC and F1 metrics on three datasets.

Table 1. Fraud detection performance on three datasets.

Model YelpChi Amazon CCDS
AUC [F1 AUC |F1 AUC |F1

GCN 0.5310 |0.4614 |0.5305 |0.4413 |0.5266 (0.4175
GEM 0.5201 |0.5017 |0.5292 |0.4983 |0.5388 |0.6599
GAT 0.5322 |0.4634 |0.5357 |0.4822 |0.5333 |0.6624
FdGarS 0.5133 |0.4304 |0.6601 |0.3757 |0.5475 |0.3689
Play2Vec 0.5231 |0.4606 |0.5205 |0.4587 |0.5380 |0.5022
GeniePath 0.6761 |0.5915 |0.7832 |0.7952 |0.6150 |0.6234
Graphconsis 0.7060 0.6041 0.8225 |0.7766 |0.5893 |0.6402
SEMIGNN 0.5201 |0.1045 |0.8782 |0.7819 |0.5473 |0.4485
CAREGNN 0.7934 |0.6493 |0.9115 |0.8531 |0.6534 (0.5771
PCGNN 0.7987 |0.6300 |0.9405 |0.8865 |0.6795 |0.6077
SPGNN-Nosample 0.7793 0.5796 |0.9362 |0.8929 (0.7209 (0.6222
SPGNN-Nosubgraph 0.7579 |0.5897 /0.9217 |0.8971 (0.6922 |0.6467
SPGNN-NoRL 0.7825 10.5165 |0.9513 |0.8923 |0.7189 |0.6284
SPGNN-all 0.8013/0.6517/0.95190.91590.7352/0.6654

4.2 Fraud Detection Performance

We repeated the experiments ten times for each method and have shown the
average performance in Table 1. The first five rows of Table 1 report the results
of some classic graph-based methods, including GCN, GEM, GAT, FdGars, and
Play2Vec. It is clear that the results of GCN and GEM are not satisfactory,
demonstrating the limitations of shallow models in addressing complex fraud
patterns. GAT introduces the attention mechanism to improve the indiscriminate
aggregation of neighbor information compared with the first two methods, but
the improvement is not significant. FdGars and Play2Vec improve performance,
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partially due to their enlarged model capacities. GeniePath and Graphconsis
perform closely to each other and better than the first five methods. The results
demonstrate the effectiveness of aggregating neighborhoods based on node sim-
ilarity in detecting fraud transactions. SEMIGNN performs well in the Amazon
dataset, while it performs poorly on the Yelp and CCDS datasets as it is an
unsupervised method and data distribution can seriously affect its model perfor-
mance. CAREGNN introduces RL module, resulting in improved performance.
PCGNN achieved more competitive results by sampling nodes and edges.

Lines 9-12 show the results of SPGNN and its sub-models. It should be noted
that SPGNN-nosubgraph performs considerably lower than the other two sub-
models, which proves the superior performance of the subgraph pattern features.
In general, SPGNN performed the best across all metrics.

Table 2. Node similarity statistics. Y 7 ) : poman )
Dataset YelpChi | Amazon | CCDS -~ X_Mh"
Node 45,954 | 11,948 | 140,576
Edge (M) | 3.85 | 4.40 19.96
Fraud (%) | 145 | 9.5 7.8
Old 0.77 0.65 0.69
New 0.55 0.46 0.57

Fig. 3. The layout of a typical
graph in Amazon.

4.3 Interpretative Analysis

We calculate the feature similarity of neighboring nodes based on the Euclidean
distance of their feature vectors, ranging from 0 to 1. The average similarity
is normalized with respect to the total number of edges, as shown in Table 2.
Initially, the feature similarity was unusually high. However, after incorporating
subgraph pattern features and re-measuring, we observed a decrease in similarity
of at least 13.2%, indicating significant differences between fraudulent and legiti-
mate nodes’ subgraph pattern features, thus enhancing fraud detection accuracy.
Figure 3 illustrates a typical case in the Amazon dataset, involving 296 users.
Fraudulent nodes are marked in red, while normal nodes are in blue. Box A
showcases the first type of relationship disguise: engaging with many legitimate
entities. Box B illustrates the second type: avoiding direct transactions. Zooming
in on box B, it shows a central node labeled X, surrounded by benign entities
and not directly connected to other fraudulent nodes. However, this central node
exists in a special subgraph pattern X-0-1 with nodes a, b, and c. This further
demonstrates how subgraph pattern features aid in identifying disguised fraud-
sters even without direct connections.
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5 Related Work

Credit card fraud detection has been a significant application area for machine
learning techniques. Traditional methods often rely on time perception [22] to
capture fraudulent transaction patterns. However, these approaches may over-
look relevant characteristics or focus solely on temporal features. Recently, GNNs
have shown promise in fraud detection [14], yet they struggle to effectively iden-
tify disguised fraudsters. To address this challenge, existing sampling methods
are introduced [9]. Despite their advancements, these methods often suffer from
high computational complexity and may struggle with complex disguise sce-
narios. In contrast, SPGNN combines a simpler similarity measure with lower
computational complexity and leverages subgraph pattern features to effectively
identify disguised fraudsters, enhancing the capabilities of GNNs.

6 Conclusion

This paper addresses credit card fraud detection, a critical real-world challenge.
Recognizing the significant impact of fraudsters’ disguise tactics on GNN-based
detectors, we propose a probabilistic neighbor selector for initial disguise filter-
ing. Furthermore, we integrate reinforcement learning to adjust neighbor selec-
tion based on node similarity, enhancing detection accuracy. Leveraging sub-
graph pattern features, we unveil intricate transaction dependencies, capturing
complex interactions in the graph and offering insights into fraudulent activities.
SPGNN'’s capability to identify and utilize subgraph patterns is pivotal for pre-
cise fraud detection, minimizing false positives. Extensive experiments across
various fraud datasets validate SPGNN’s superiority over baseline methods,
underscoring its efficacy and practical applicability in real-world scenarios.
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